Appendix A

| Projects |

IA.I Minor Project 1: Menu Based Calculation System

Learning Objectives
The designing of the Menu Based Caleulation System project will help the students to:

Create C++ classes with static functions
Generate and call static functions

L

L]

® Use the functions of Math.h header file

® Develop and display the main menu and its submenus

Understanding the Menu Based Calculation System

The Menu Based Calculation System project is aimed at performing different types of
calculations including normal and scientific caleulations. In this project, two calculators,
Standard and Scientific, are used for performing the caleulations. The Standard ealculator
helps in performing simple calculations such as addition, multiplication, ete. while the
Scientific calculator helps in performing mathematical operations such as finding the square
or cube of a number.

The first screen contains a menu from which you ean select the type of caleulator: Standard,
or Scientific. The first screen also provides the Quit option to terminate the exeeution of the
application. Figure A.1 shows the first screen of the menu based calculation system.

To select a calculator, enter the integer corresponding to the calculator name. For instance,
if vou select 1, the Standard calculator will open up, while selecting 2 will open the Scientific
calculator,

Appendix A 2497

Tuirho T 4+ + TDE

F Calculatops=
1 t i | il Calculator
¥ 4 e] L T '...1fII||.1|_|||"
| [P TR A
Choose=the L e of“paloculator:

Fig. A.1 |

Developing the Menu Based Calculation System

The code of the calculator application mainly comprises of two classes stand_cale and
scien_cale. The stand_cale class helps to perform standard calculations. The scien_cale class,
on the other hand, helps to perform scientific calculations. Both classes contain static functions
80 as to ensure that these functions can be called in the main function through class name.

Creating the stand_calc class

The stand_cale class aims at performing specific tasks related to standard calculations. These
tasks are:

Adding two numbers

Subtracting the second number from the first number
Multiplying two numbers

Divading the first number by the second number
Muodulus of the first number by the second number

To perform the above-mentioned tasks, the stand_cale class implements the following
member functions:

LR N N

E-M M’fﬂﬂ R by it] o .-._!."'."‘; |E:"=:__' . 14 “F F ;
Addition Returns the addition of two input numbers,
Bubtraction Returns the subtraction of two numbers accepted as input from the user,
Multiplication Returns the multiplication of two numbers accepted as input from the nser,
Divigron Returns the output obtained after performing the division operation on the
input numbers,
Modulus Returng the output obtained after performing the modulus operation on the

input numbers.

498 @ Object-Oriented Programming with C++

Creating the scien_calc class

You need to create the scien_calc class to perform tasks related to scientific calculations,
which include finding the square or cube of a number, etc. The scien_cale class performs the
following tasks:

Determines the square of a number

Determines the cube of a number

Determines the firat number to the power of the second number
Determines the square root of a number

Determines the factorial of a number

Determines the value of sin, cos and tan by passing a number

To perform the above-mentioned tasks, the scien_cale class implements the following member
functions:

Functions Description A o] 1~ s 4k
Square Accepts a number and returns the square of that number
Cube Accepts a number and returns the cube of that number
Power Accepts two numbers and returns the first number to the power of the
second number
sq_root Acrepts a number and returns its square root
Fact Returns the factorial of an input number
gin_fune Returns the sin value af an input number
cos_fune Returns the cos value of an input number

tan_fune Returns the tan value of an input number

Calc

/* calc.cpp is a calculator. Initially, it displays a main menu to choose the calculator
type. If a user chooses 5tandard calculator, then a menu appears for standard calculator
options. If a user chooses Scientific calculator, then a menu appears for scientific
calculator options and the Tast option is to Quit.
In standard calculator, options are to add, subtract, sultiply etc. and in scientific
calculator, options are power, factorial, square root, etc.
In this program, preprocessor are defined for new calculation and old calculation. Mew
calculation will accept an operand whereas in old calculation, one operand is already
assumed from the result of previous calculation.
Exception handling is not implemented in this project, so do not enter a string when
system asks you for a number.

o

JfFile including and preprocessor declaration

#include <iostream. h=

#Finclude =conio.h=

#Finclude =math.h=

Appendix A €499

#include <stdlib.h=

#define new cal 1

#define old cal 0

{/stand calc class to define standard calculator functions
class stand _calc

{

/*Protyping of standard calculator functions. These functions are static, therefore
calling of these functions is possible with the name of the class. There is no need
to create an object of the class. */

public:

static double addition({double,double);

static double subtract(double,double);

static double multiplication(double,double);

static double division{double ,double *);

static double modulus(double *,double *);
¥
[fscien calc class to define scientific calculator functions
class scien_calc
{

public:

static double square(double);

static double cube(double);

static double power(double,double);

static double sq_root(double);

static long int fact({double);

static double sin_func(double);

static double cos_func(double);

static double tam func(double);

H
Jfaddition function will add two numbers
double stand calc::addition(double a, double b)

J
//subtract function will subtract the second number from the first number

double stand calec::subtract(double a, double b)
{

I
f/multiplication function will multiply two numbers

double stand_calc::multiplication{double a, double b)

(
}

return{a+h);

return{a-b);

return{a*h);

500® Object-Oriented Programming with C++

Jf*division function will divide the first number by the second number. This function
accepts two arguments, one is copy of a variable and another is pointer type because
if accepting divisor is zero, then this function will show a message to entér the
divisor again. Using pointer means that the entered value of the divisor for this
function should be updated at the main function also.*/
double stand calc::division(double a, double *h)
i
while(*b==0)
{
cout=="\nCannot divide by zero.";
cout<=<"\nEnter second number again:";
cin==*h;
b
return(a/(*b));

1
J/*Modulus function will divide the first number by the second number and return the

remainder part of the division. Similar to division fumction, it will not accept
zero in the divisor. Modulus cannot be performed on a double number, so we need to
convert it into an integer.*/
double stand calc::modulus(double *a, double *b)
{
while(*b==0)
{
cout=<"\nCannot divide by zero.";
cout<<"\nEnter second number again:";
cin=>*h;
|
J/Converting double into am integer
int x={int)*a;
int y={int)*b;
if(=a-x>0| | *b-y=0)
cout<<*\nConverting decimal number into an integer to perform modulus®;
*a=ny
*b=y;
return(xiy);
1
//Declaration of scien_calc class functions starts from here.
Jfsquare function of scien calc class to return accepting number to the power 2
double scien calc::square(double x)

{
I

/fcube function of scien calc class to return accepting number to the power 3
double scien_calc::cube(double x)

{
}

return(pow(x,2));

return(pow(x,3});

Appendix A @ 501

/fpower function of scien calc class to return the first number to the power of the
second number
double scien_calc::power({double x,double y)

I
|

{/sq_rrot function of scien_cale class to return the square root of the entered number
double scien_calc::sq_root(double x)

(

I
f*fact function of the scien_calc class to return a long integer as factorial of an

accepting number, This will convert accepting number into an integer before calculating
the factorial®*/
long int scien_calec::fact(double x)

{

return(pow(x,¥));

return(sqrt(x));

int n=(int)x;
lang int f=1;
while(n=1)
{
fE=p3
N3
|

return f;

]

Jfsin_func of the scien_calc class to return the sin value of x
double scien calc::sin_func(double x)

{

)
/fcos_func of the scien calc class to return the cos value of x
double scien calc::cos func(double x)

{
I

fftan_func of the scien_calc class to return the tan value of x
double scien_calc::tan_func(double x)

return(sinfx));

return(cos(x));

return(tan(x));
b

J/Displaying the menus to enter the options and values
void main()
{
double numl,numZ,num3, temp;
int choicel=0,choiceZ,flag;
J/Loop of main menu from where the program starts. It will show the menu to choose
the type of calculator.

502 Object-Oriented Programming with C++

cirscr();
cout<<*ssasssssType of Calculatorsg=ssssa=";
coute<*\nl\tStandard Calculator\nZ\tScientific Calculator\n3\tQuit";
cout<<*\nChoose the type of calculator:";
cin>>choicel;
flag=new cal;
[{To perform an operation according to the entered option in the main menu
switch{choicel)
{
case 1:
ffLoop to display the standard calculator menu
do
{
clrscr():
cout<c" sssssmssssitandard Calculatorssssesssssa";

coute<"\nl\tAddi tion\n2\tSubtraction\n3\tMultiplication'nd\ tDivision\ns tModulus\n6\ tReturn
to Previous Menulni?\tQuit";
/fOption 8 will be displayed only when working on
old calculations. Here, already a number is saved in the calculator memory.
if(flag==o1d_cal)
cout<<"\nB\tClear Memory™;
cout<=<"\nChoose the type of calculation:";
cin==choiced;
//To perform operation and call functions of the
stand_calc class
switch(choice?)
{
case 1:
J/1f a new calculation is there, then
accept the first number else previous calculation result will be the first number.
if (flag==new cal)
{
cout=<"Enter first number:";
cin==num]l ;

el 5e

numl=temp;
cout=<"YnFirst number s
"<<numl=<end] ;
}
cout<<"Enter second number:";
£l A==nume ;

Appendix A @503

num3=stand calec::addition(numl,num?};
r cout=<"\nAddition of "<<numl<<" and
"eepumZ=<" i5 "<<num3;
cout=<="YnPress any key to
CONtiNUB. . eananana}
getch();
temp=num3;
flag=old cal;
break;
case £:
if (flag==new cal)
{
cout=<"Enter first number:";
Cin®>num] ;

else

numl=temp;
cout<<"\nFirst number is
"ccnuml<<end] ;
J
cout=<"Enter second number:";
cin==num;

num3=stand calc::subtract{numl,num?};
cout=="Y\nSubtraction of "<<numZ<<®
from "<<numl<<" is "<<num3;
cout<<*‘\nPress any key to
CONLIMUE, e s enanas
getch();
temp=num3;
flag=old cal;
break;
case 3:
if (flag==new cal)
{
cout=<"Enter first number:";
Cin==numl ;

else

numl=temp;
cout<<"\nFirst number is
"zenuml<<end] ;
}
cout=<"Enter second number:":
cin==numa ;

504 & Object-Oniented Programmung with C++

num3l5tand_cal:::mu]tip]fcatinn{numl,numE];
and "<<pumZ<<" is “<<num3;

continue....ovues."}

case 4:

Mexppm] =<end] ;

num3d=stand calc::division(numl,bnumz2);
feepumZ=<" 15 "s<numd;

CONEIAUR. o reeenn -

case §:

"ccnuml<<endl;

cnqttc"\HWu1t1p11cat1ﬂﬂ of ®conum]oc”
cout<<"‘\nPress any key to

getch();
temp=num3i;
flag=old_cal;
break;

if [flag==new cal)
{

cout=="Enter first number:";
cin==numl;

else

numl=temp;
cout=<"vnFirst number is%

)

cout=<"Enter second number:";
cine>num? ;

cout<<"\nDivision of "<<numl<<" by

cout=<"YnPress any key to

getch();
temp=num3;
flag=ald _cal;
break:
if (flag==new cal)
{
cout=<"Enter first number:";
cin==numl;
}
elge
{

numl=temp;
cout<<"\nFirst number is

}

cout=<"Enter second number:®;
cin=>num;

Appendix A
num3=stand_calc: :madul us (&nwml, Anum?) ;
"ecpumZ<<® i5 "<<num3;

Eunti“uE4r1r1r1r1r.;

case 6:
continue.....oouua”s

case 7:
continue...........":

case B:

®505

cout=<"\nModulus of “<<numle<" by
cout<<"\nPress any key to

getch();
temp=num3l;
flag=old cal;
break;

cout=<"\nReturning to previous menu.";
cout<<"\nPress any key to

getch();
break;

couts<s"\nluitting..cvvvacnnana™}
cout=="%“nPress any key to

geteh();
extt{0);

J/1f a new calculation is going on

then 8 is an invalid option, else B is an option to start & new calculatiom

CONtiMUB. o vuwnea s

defaul t

CONLINUe, . .vvrrrrnss"]

t
Iwhile (choiceZl=g);
break;

if(flag==new cal)

{
cout<<"\nInvalid choice.";
cout=<"‘nPress any key to

getch();
1
else
{
temp=0;
f1 ag=neu_¢;a'| -
|
break;

cout=="Y\nlnvalid choice.";
cout=<"\nPress any key to

getch();
break;

506 Object-Oriented Programming with C++

cace 2:
JfLoop to display scientific calculator menu
do
{
cirscr();
coutes =e=zze====fefentific Calcul ator====s======",

cuut**'\nl\tSquareEnEHtEuhE\nlktPuuer\nﬂ\tFactur1al\n53151n\ﬂﬁ\tﬂus\n?\tTaninB\tHeturn
to previous menubnSYtQuit®;
if(flag==01d_cal)
cout=="ynl0\tClear Memory";
cout<<"\nChoose the type of calculation:";

cin>>choice?;
switch{choiceZ)
{
case 1@
if (flag==new cal)
{
cout=<"Enter number to find
square:":
cin==numl;
1
else
{
numl=temp;
cout=="\nNumber is
"eznuml<<end] ;
|
num3=scien calec::square(numl);
cout=="\nSquare of “=<numl=<" is
"qqm-ﬁ:
cout=="%nPress any key to
CONLIAUR. essnanans ol
getchi);
temp=num3;
flag=old_cal;
break;
case 2:
if (flag==new _cal)
{
cout=<*Enter mumber to find
Clube:®;

cin>=numl ;
else

numl=teamp:
cout<<"\nNumber is

"eenuml<<end] ;

“esnumd ;

CONEIMUB. s v s wanansn .

for base to find power:®;

"eenuml<<end] ;

to find power:";

"wequmd=<" {5 "=<numd;

COnEinWE. . oursnan. 3

factorial:";

Appendix A

case 3:

case 4:

* 507

1
num3=scien_calc::cube(numl) ;
cout=<"\nCube of "<<numl<<® is

cout<=<"\nPress any key to
getch();

temp=num3;

flag=old_cal;

break;

if (flag==new_cal)

{
cout<<"Enter first number
cin==numl;

|

else

{
numl=temp;

cout=<"\nFirst number is

]
cout<<"Enter second number for power

cin==num? ;
num3d=scien_cale: :power(numl,num2) ;
cout=<"\n"<<numl=<" to the power

cout<<"\nPress any key to

geteh() ;

temp=num3 ;

flag=old_cal;

break;

if (flag==new cal)

{
cout=="Enter number to find
cim==numl;

else

numl=temp;
cout<<"\nNumber to find

508 e Object-Oriented Programming with C++

factorial is “<<numl<<endl;

}

Tong int numd=scien calc::fact(numl);

cout<<"\nFactorial of "<<puml<<" is
®oonumd ;

cout<<*\nPress any key to
continue.cac." 3

getch();

temp=rium4 ;

flag=01d_cal;

break:

case 5:
if {F1ag==nen_ca1]

cout=<"Enter number to find
s5in value:";
cim>>numl;

numl=temp;
cout=<" aNumbar for 2in valus
is "eenuml=<end];

num3=scien_calc::sin_func(numl);
cout<<®ynSin value of "ecnumle<® is

Ueenumd ;

cout<<"\nPress any key to
continue. ..ovenvas"; {

getch();

temp=num3;

flag=old_cal;

break;

case b:
if (flag==new cal)

cout=<"Enter number to find
cos value:";
cin==numl ;

numl=temp;
cout=<"\nMumber for cos value
is "=<puml<<end];

num3=scien_calc::cos_func(numl);
cout=<"\nCos value of "<<puml<<" is

'ttnum};

contimue. .ccvevans §

tan wvatwe:";

{5 "e<numl<<end] ;

‘qtnumsi

oA IMUE. e rnnnaat}

COnEimuE. «.vuvuvan')

contimUE. s csvannna H

Appendix A -2 509
cout=="\nPress any key to
getch();
temp=num3;
flag=old_cal;
break;

case 7:
if (flag==new cal)
{
cout=<"Enter number to {ind
cin==numl ;
|
else
{
numl=temp;
cout<="\nNurber for tan value
i
num3=scien_calc::tan_func{numl) ;
coutes"\nTan value of "senumlec" 13
cout=<*\nPress any key to
getch();
temp=numi ;
flag=old cal;
break;
case &:
cout=="\nReturning to previous menu.”;
cout=<"\nPress any key to
getch();
break:
case 9:
cout<<"\AQuitting. .coonennronsy
cout=<*\nPress any key to
getch();
anit(0);
case 10:

if(flag==new_cal}

{
cout<<"\nInvalid choice.";
cout<<"\nPress any key to

210

I:ﬂﬂt'inue-irp-r-.r-r.:

CONEANUE. ccovivenncan &

|
}while (choicell=3);

}

Object-Onented Programming wath C++

getch();

}

glse

{
temp=0;
flag=new cal;

|

break;

default:

cout<="\nlnvalid choice.":
cout=<"\nPress any key to

getch();
break;
I
Iwhile {(choicez|=8);
break:
case 3:
cout=<"\nQuitting...... LC
cout<<"\nPress any key to continue........";
getchi():
break:
default:

cout<=="\nlnvalid Choice.";

cout<<*\nPress any key to continue........";
getch();

break:

I_&.Z Major Project 1: Banking System

Learning Objectives

The designing of the Banking System project helps the students to:

Create C++ classea and call the functiong declared in the classes

Develop and display main menu and its submenus

Change the menu options during runtime

Programmatically create files using File System objects

Perform file transactions such as Updntiun, Deletion and Ihsplay from files

Use iomanip header file in C++ to display formatted output of data using setw()

function for setting width of the text to be displaved.

Hidden page

S12e Ohject-Oriented Programming with C++

Creating the dispRecords Class

You need to create the dispRecords class to implement the functionality of displaying the
information related to the customers of a bank and their accounts. In the dispRecords class,
data related to customers is retrieved from the newrecords.dat data file for displaying customer
information or adding and cloging of customer accounts. You can create the dispRecords
class by defining the variables required for displaying customer and account information and
the member funetions such as displayCustomer and deleteAccount. The following table
lists the member functions that need to be defined in the class dispRecords:

addDetails(int, char name[30], Adds the information related to a new customer of the bank

char address[60], float) who becomes an account holder.

digplayCustomers(void) Digplays a list of all the account holders of the bank along with
their account numbers and balance,

deleteAccount(int) Deletes the information related to the account holder from the
newrecords.dat data file.

updateBalance{int, float) Updates the balance after a customer has performed a deposit
or withdrawal transactismn.

lastAccounti) Displays the account number of the last entry.

accountExists{int) Checks whether an account exists or not.

getameiint) Retrieves the name of the account holder.

petAddress{int) Retrieves the address of the account holder.

fetBalance(int) Retrieves the balanece of the account holder,

getRecord{int) Returns the record number from the newrecords.dat data file
when an emplovee of the bank enters the account number
related to an account holder.

display(int) Digplays all the information related to an account holder from
the newrecords. dat file on the bagis of specified account number,

Creating the accountTransactions Class .

You need to create the aceountTransactions class so that transactions related to an account
can be performed. The data related to the transactions are stored in the transaction.dat data
file. The accountTransactions class also uses some member functions defined in the
dispRecords class. In the class accountTransactions, the Object Oriented Programming (OOP)
concepts of Polymorphism are used to manipulate data, which need to be stored in the
transaction.dat data file. You can ereate the accountTransactions class by defining variables
and member functions, which include new_aecount and showAceount. The following
table lists the member functions of the accountTransactions class:

Appendix A #513

. Functions " A Descriptions '.:':"ﬁ -rr. ! _1 T e
new_aceount{void) Validates the information related to a new customer and
adda the information to the transaction.dat data file wsing
the addDetails member function.

closeAceount() Clnses the acoount of an account holder after verifying the
gecount number,

showAccount(int) Displays the headings Customer Name, Deposit and
Withdrawal, Interest and Balance.

display_account(void) DMsplays the data related to a specific account holder,

deleteAccount{int) Deletes the data related to a transaction from the

transaction.dat data file on the basis of the account
number of that account holder,
tranaaction(void) Helps to perform deposit and withdrawal transactions,
dateDiffer{int, int, int, int, int, int) Checks the current and account creation dates. If the
account in the bank has completed one year, then interest
for that account is ealeulated.

getInterest(int, float) Generates interest when one year has mmpletéd for a
particular account,
showInterest(void) Digplays the interest generated using the getinterest

member function. The showInterest member function also
helps to update the balance of the account holder.

Banking Application

f** A Banking System with normal transactions **/

#include <iostream.h=
#include =fstream.h=
#include <process.h>
#include <string.h=
#Finclude =<stdlib.h=
#Finclude =stdio.h=
Finclude =ctype.h=
finclude =conio.h>
#include <dos.h=
#include <iomanip.h=

/f The Menus Class displays the Menu
class Menus

{
public :
void showmenu(void) ;

514 - Object Orented Programming with Ce+

private :

void closemenul(void) ;
§

J/ The Class displays all the Customer Account related functions
class dispRecords
{
publig =
void addDetails{int, char name[30], char address[60], float) ;
vold displayCustomers{vaoid) ;
void deleteAccount(int) ;
void updateBalance(int, float) ;
void updatefustomer{void) :
int lastAccount(void) ;
int accountExists{int) ;
char *getName(int);
char *getAddress{int);
float getBalance(int) ;
int getRecord(int) ;
vold display(int) ;
void displayList{wvaid) ;
int AccountMumber ;
char name[50], address[50] ;
float intBalance ;

bi

J/ The Class has all the transaction related methods
class accountTransactions
{
public :
void new_account{void);
void closeAccount(void);
void display account{veid);
void transaction{void);
void addDetails(int, int, int, int, char, char typeTransaction[15],
float, float, float);
void deletedccount(int);
int datepiffer(int, int, int, int, int, int);
float getInterest(int, float);:
void display(int);
void showlcoount{int);
int AccountMNumber; //variable for Account Number
char trantype[10]; // variable of cheque or cash input or output
int dday, wmonth, yyear; [/ transaction date
char transactions; // type of transactions - Deposit or
Withdrawal of Amount

Copyrighted material

i

Appendix A

float intInterest, intAmount, intBalance:;
static float calcinterest;
void showInterest{void);// /added

J/ showmenu() method to display the Main Menu in the application
void Menus :: showmenu(void)

{

char choice:

while (1)

i
clrscr();
cout=<s"in —=Welcome to Banking System Application=-
Eﬂu tq{ B i i g o e o i i v o i o e v ool oo e o ol o e o i i ol i o ol ol i l|I n '|L|-| H =
coute<® Choose from Options ‘\n*;
cout-<® \n";
cout =<" 1: Open an Account\n®;
cout =<® £: Yiew an Account n®;
cout =<" 3: Show all Accounts 'n";
cout =<® 4: Make a Transaction ‘\n";
cout =<* 5: Calculate Interesti\n®;
cout =<® 6: Close an Accountin®;
cout <<" 7: Exitinin";
cout =<" Please select a choice : ¥;

choice = getche();

if {choice == '1')

{
accountTransactions objAT;
objAT.new_account();

|

else

if (choice == '2')

{
accountTransactions objAT;
objAT.display account();

}

else

if {choice == '3'}

{
dispRecords newRec;
newRec.displayCustomers();

I

else

if (choice == '4')

€515

"

Copyrighted material

Hidden page

Hidden page

518e Object-Oriented Programming with C++

int record ;

record = getRecord(retrieve_AccNa) ;
fstream filename
filename.open("newrecords.dat®, ios::in);
filename.seekg(0,ios::end);

int location;

location = (record) * sizeof(dispRecords);
filename.seekp({location);

while (filename.read{(char *) this, sizeof(dispRecords)))

{

if {retrieve_hcch == AccountNumber)

1
cout =<*\n ACCOUNT NOD. : " =<AccountNumber ;
cout =="\n Mame : M=spame
cout <=<"\n Address : " <<address ;
cout =<"yn Balance : ™ <<intBalance ;
break

]
I
filename.close() ;

]

/f getName() method returns the Account Holder's Name from the newrecords.dat file
char *dispRecords :: getName(int retrieve_AccNo)

{
fetream filename;
filename . open(*newrecords.dat”, ios::in);
filename.seekg(0,ios: :heg);
char retrieve CustMame[30];

while (filename.read((char *) this, sizeof(dispRecords)))
(
if (AccountMumber == retrieve AccNo)
1
strocpy(retrieve_CustName,name);
}
t
filename,close();
return retrieve_CustName;
J
/[getAddress () method returns the Address of the Account Holder from the newrecords.dat
file
char *dispRecords :: getAddress(int retrieve AccNe)

Copyrighted material

Hidden page

520@ Ohject-Oriented Programming with C++

{
count = 1;
break;
}
}
filename.close();
return count;

}

J* displayList() method displays the output of all the Accounts in a proper format
for the Choice 3%/

void dispRecords :: displaylList()

{

coute<"

int dayl, monthl, yearl ;

struct date dateval;

getdate(&dateval);

dayl = dateval.da day ;

monthl = dateval.da_mon ;

yearl = dateval.da year ;

cout <<"\n Date: " ==dayl <<"/" —<monthl <<"/" <<yparl<<"\n";

cout==setw(B0)=<" An";

cout<=<setw(23)<<" ACCOUNT ND.";

cout<<setw(23)<<" NAME OF PERSON™;

coutecsetw(23)<<" BALANCE\n";

cout==setw(B0)<=<" n";
}

/! displayCustomers() method displays all the Account Holders/Customers from the
newrecords.dat file
void dispRecords :: displayCustomers(void)
{
clrscr()
int lenl;
int row=8, check ;
fstream filename ;

FILE * pFile;
pFile = fopen(*newrecords.dat","r");
if (pFile == NULL)
{
cout=<"\n No Account exists. Please go back to the previous menu. \n";
getch();
return ;
Jifclose (pFile);

} else {

Appendix A ®521

displaylist();

filename.open(“newrecords.dat”, ios::in);
filename.seekg(0,i0s: :beg);

while (filename,read({(char *) this, sizeof(dispRecords)))

{
check = 0 ;

cout. fill(' *):

cout <<setw(20);
cout.setf(ios::right,los:zadjustfield);
cout<<AccountMumber;

cout Fi11{" *):

cout =<setw(25);
cout.setf(ios::internal,ios::adjustfield);
cout<<name;

cout =<setw(23);
cout.setf(ios::right,i0s::adjustfield):
coute<intBalances<"\n" ;
ToWH
if (row == 23)
{
check = 1 ;
row = § ;
cout =<" ‘n\n Continue the application... \n";
getch()
clrscr() ;
displayList() ;

1

|

filename.close()

if (!check)

{
cout =<"\n\n Continue the applicatiom... “n";
getch() ;

]

1

/) addDetails() method adds new records of Account Holders/Customers in the
newrecords.dat file
void dispRecords :: addDetails(int retrieve AccNo, char retrieve CustMame[30],
char retrieve Address[60], float iBalance)
{

AccountNumber = retrieve AccNo ;

stropy (name,retrieve_CustName) ;

strcpy(address,retrieve_Address) ;

intBalance = iBalance ;

Hidden page

Appendix A @523

intBalance = iBalance ;

int location ;

location = (record-1) * sizeof(dispRecords) ;
filename.seekp(location) ;

filename.write((char *) this, sizeof(dispRecords)) ;
filename.close() ;

}

{/ addDetails() method adds the details of a transaction in the transactions.dat file
void accountTransactions :: addDetails(int retrieve AccNo, int dayl, int monthl, int
yearl, char t_tran, char typeTransaction[10], float interest_accrued. float t_amount,
float iBalamce)
{

fstream filename ;

filename.open(“transactions.dat”, ios::app) ;

AccountMumber = retrieve AccNo ;

dday = dayl ;

mmonth = monthl ;

yyear = yearl ;

transactions = t_tran ;

strcpy (trantype, typeTransaction) 3

intInterest = fntenest_at:cnu:d]

intAmount = t_amount ;

intBalance = iBalance ;

filename.write((char *) this, sizeof(accountTransactions)) ;

filename.close();

[deletefccount () method deletes the record of a transaction from the transactions.dat
file
void accountTransactions :: deleteAccount(int retrieve AccNao)
{
fstream filename ;
filename.open(*transactions.dat", {foes::in) ;
fstream temp :
temp.open{"calculations.txt", ios::out) ;
filename.seekg(0,ios::beg) ;
while [1filename.eaf())

{
filename.read((char *) this, sizeof{accountTransactions)) ;

if (filename.eof())
break ;
if { AccountNumber != retrieve Accho)
temp.write((char *) this, sizeof{accountTransactions)) ;
!
filename.close() ;
temp.close() ;

524e

}

Object-Onented Programming with C++

filename.open("transactions.dat”, 1os::out) ;
temp.open(“calculations.txt®, ios::in) ;
temp.seekg(0,io0s::beg) ;

while { !temp.eof())

{

temp.read((char *) this, sizeof(accountTransactions)) ;
if (temp.eof())
break
filename.write((char *) this, sizeof({accountTransactions)) :
}
filename.close() 3

temp.close() ;

{/ new_account() method adds a new record in the newrecords file and transaction.dat
files(choice 1)
void accountTransactions :: new_account(void)

{

char chaice ;

int i, check ;
clrser() ;
dispRecords newRec ;

cout <<* Please press 0 to go back to previous menu. \n" ;
cout=<" n®;
cout<<" —Open a New Bank Account- \n";

ooy t_ﬂl i v ol o ol ol o ol ol e i 'lllnl :

int dayl, monthl, yearl ;

struct date dateval;

getdate(Adateval);

dayl = dateval.da_day ;

monthl = dateval.da mon ;

yearl = dateval.da year ;

int retrieve Accho ;

retrieve AccNo = newRec.lastAccount() ;
retrieve_AcchNo#+ ;

if (retrieve_AccNo == 1)

(
newRec.addDetails(retrieve_AccNo,"Ravi","Delhi", 1.1} ;
newRec.deleteAccount(retrieve_Accho) ;
addDetails(retrieve_AcchNe,1,1,1997,'D’,"default value®,1.1,1.1,1.1) ;
deleteAccount(retrieve_Acche) ;

|

char retrieve CustName[30], tran acc[l0], retrieve Address[60] ;

float t_bal, iBalance ;

cout =<" Date : "<«dayl <<"/" <emonthl <<"/" <=yparle<"\n" ;

cout =<' Account no. # " <<retrieve_AccNo;

Hidden page

526® Ohbject-Oriented Programming with C++

gets(chr_VerifyingPerson);
if (chr VerifyingPerson[0] == '0')

{
cout=<"Yn\t Invalid Verifying Person Mame.";
getch();
réeturng

;

strupr{chr_VerifyingPerson) ;
if (strlen{chr VerifyingPerson) <1 || strien{chr VerifyingPerson) = 30)
{
check = 0 ;
cout=<"\thn The Yerifying Person's Name is either blank or
greater than 30 characters. Please try again.\n";
getch{) ;
1

} while (!check) ;

do
i
cout =="\n Please enter the Deposit Amount while opening a Mew Account : ";
check = 1 ;
gets(tran_acec) ;
t bal = atof(tran acc) ;
iBalance = t_bal ;
if (strien(tran_acc) =< 1) {
cout<<"\n Invalid Transaction value. Exiting from the current
Menu.\n *;

getch();
return 3
}
if (iBalance = 1000)
{
check = 0 ;

cout=<"%t\n The Minimum Deposit Amount should be Rs.1000. Please
try again. \n";
getch(} :
}

I while [icheck) ;

do

{
cout =<"\n Do you want to save the record? (y/n) : * ;
choice = getche() ;
choice = toupper(choice) ;

Copyrighted material

Appendix A 2527

} while (choice != 'N' & choice I= 'Y') ;
if (choice == 'N' || choice == 'n")

{
cout<<"\n The Customer Account is not createdin.
Please continue with the application.\n";
getch();
return ;

float t_amount, interest_accrued ;
t_amount = iBalance ;
interest_accrued = 0.0 ;

char t_tran, typeTransaction[10] ;
t tran = 'D' ;
strepy(typeTransaction,” “) ;

newkec.addDetails(retrieve AccMo,retrieve CustName,retrieve Address,iBalance) ;
addDetails(retrieve AccNo,dayl,monthl,yearl,t tran,typeTransaction,
interest accrued,t amount,iBalance);

cout<<" \n\n The New Account 15 successfully created.\n
Please continue with the application.\n";
getch();

}

// showAccount() method formats the display of the records from the transactions.dat
file for a particular account(choice 2).
void accountTransactions :: showAccount(int retrieve_AccNo)
{
cout=<"
\n";
int dayl, monthl, yearl ;
struct date dateval;
getdate(&dateval);
dayl = dateval.da_day ;
monthl = dateval.da mon ;
yearl = dateval.da_year ;
cout=<"Date: " <<dayl <<*/* <amonthl <<*/" <<yparle<"\n* ;
cout <<"Account mo. * <<retrieve_Accho ;
dispRecords newRec ;

char retrieve_CustMame[30] ;
stropy(retrieve_CustName, newRec.getName (retrieve_AccNo)) ;
char retrieve Address[60] ;
strepy(retrieve_Address,newRec.getAddress(retrieve_AccNo)) :

cout<<setw(25)<<"\n Account Holder's Name : ‘"<<retrieve CustName;
cout=="YnAddress : “=z<retrieve_Address<<"\n";
cout<<setw(80)<<"\n \n";

528e Object-Oriented Programming with C++

cout<=<setw(10)<<"Dated";
cout=<setw(12)<<"Details";
cout<=setw(l12)=<"Deposited”;
cout<<setw(15)<<"Withdrawn";

cout==setw[12) ==" e
coutecsetw(10)<<"Balanca";
cout=<setw(80)=<"\n \n";

}

{/ display account() method displays records from the transactions.dat file
void accountTransactions :: display_account(void)
{

clrscr() ;

char t_acc[10] ;

int tran _acc, retrieve AccMo;

dispRecords objZ;

cout =<" Press 0 to go back to previous menu.\n" ;

cout =<" Please enter Account Mo. you want to view : " ;

gets(t acc);

tran acc = ath[t_al:-t]; f/* converting Account Number to integer value */

retrieve_AccNo = tran_acc;

if {retrieve AccNo == 0){
cout<<*yn You have pressed 0 to exit. W\n";
getch();
return 3

i

clrser():

dispRecords newRec;
accountTransactions aa;
int row=8, check ;
fatream filename

FILE * pFile;
pFile = fopen(®"newrecords.dat®,*r®);
if (pFile == NULL)
{
cout=<"\n No such Account Exists. Please create a New Account. \n";
getch();
return ;

| else if (InewRec.accountExists(retrieve AccNo)) |
cout =<"\tin Account does not exist.\n®;
getch(];
return;

| else {

showAccount (retrieve AccNo) ;
filename.open{“transactions.dat™, 1ios::in);

Hidden page

530 Object-Oriented Programming with C++

// dateDiffer() method displays the difference between 2 dates.
int accountTransactions :: dateDiffer(int dayl, int monthl, int yearl, int day2,
int monthZ, int year?)
{
static int monthArr[] = {31,28,31,30,31,30,31,31,30,31,30,31}; [fArray of
months for storing the no. of days in each array
int days = 0 ;
while (dayl != day2 || monthl != month2 || yearl != yearZ)
{
/* checking if the two dates in days,months and years differ and incrementing
the number of days.*/
days++ ;
dayl++ ;
if {(dayl = monthArr[monthl-1])
{
dayl = 1 ;
monthl++ ;
)
if (monthl = 12)
{
monthl = 1 ;
yearl++ ;
!
} return days ;
}

/f getinterest() function calculates interest on the balance from the transaction.dat
file
float accountTransactions :: getInterest({int retrieve AccMo, float iBalance)
{

fstream filename ;

filename.open{"transactions.dat", ios::in);

dispRecords newRec;

filename.seekg(0,i0s::beg) ;

int dayl, monthl, yearl, month_day;

while (filename.read((char *) this, sizeof(accountTransactions)))

{

if [AccountNumber == retrieve AccMo)

{
dayl = dday ;
monthl = mmonth ;
yearl = yyear ;
iBalance = newRec.getBalance(retrieve AccMo);
break ;
}

b
int day2, monthd, yearZ;
struct date dateval;

Copyrighted material

Appendix A @531

getdate(Rdateval);

day? = dateval.da day;

monthZ = dateval.da_mon;
year2 = dateval.da_year;
float interest accrued=0.0;
int yeardiff = year? - yearl;

if ((yearZ<yearl) || (year2==yearl &% month2<monthl) || (yearZ==yearl &&

month2==monthl A& dayZ<dayl)) {

]

return interest accrued;
}
month day = dateDiffer(dayl,monthl,yearl,day2,month2, year);
int months;
if (month day == 30)

{

months = month_day/30;
} alse {

months = month_day/30;
l

if(interest_accrued == 0 A& yeardiff == 1) |{
interest_accrued = ((iBalance*0.5)/100) * (months);
} else if (yeardiff > 1 &% yeardiff < 25 84 interest_accrued == Q) |
interest accrued = (({iBalance*0.5)/100) * {months);
| else |
interest accrued = 0;

filename.close();
return interest accrued;

/*Method for generating Interest and updation of the Balance and addDetails

methods. (Choice 5)*/
void accountTransactions :: showlnterest(void)

{

clrscr();
char t_acec[10];
int tran_acc, retrieve Accho, check;

cout =<strupr(*\n Important Information: Interest should be generated only\n

once in a Year.\n\n\t If you have already generated interest for an Account,\n\t
please ignore that Account.\m\t Thank you.\n®);

cout =<"\n Press 0 to go back to previous menu.\n" ;
cout =<"\n To view the transaction of the Account, please enter it: " ;
gets(t_acc) ;

Hidden page

Appendix A ®533

/* This method does all the Deposit/Withdrawal transactions in the transaction.dat
file{Choice 4)*/
void accountTransactions :: tramsaction(void)

{

clrscr();
char t _ace[10];
int tranm_acc, retrieve AccMo, check;
cout =< Press 0 to go back to previous menu.\n" ;
cout =<® To wiew the transaction of the Account, please enter it: " ;
gets(t acc) ;
tran_acc = atoi(t_acc) ;
retrieve_AccNo = tran_acc ;
if (retrieve Accho ==)
return ;
clrscr() ;
dispRecords newRec ;
if (!newRec.accountExists(retrieve Accho))

{
cout =<"\t\n Account does not exist.\n";
getch();
return;
!
cout ==" Press 0 to go back to previous menu.yn";
Ccout=<" n";
cout=<"\n —Make correct entry for the Transaction below- \n®;

Lu“t{tl iy g oo v o ol ol o vk ool il ol o o o ool il e ol i o ol e ol o o ol il ii’.i’ii’ii’\i n n :

int dayl, monthl, yearl;

struct date dateval;

getdate(Bdateval);

dayl = dateval.da_day;

monthl = dateval.da_mon;

yearl = dateval.da_year;

cout =<" Date : "<<dayl <<"/" <amonthl =<"/" <<yearl<<"\n"; &
cout =<* Account no. ® <<retrieve AccMNo=<"\n";

char retrieve CustName[30] ;

char retrieve Address[60] ;

float iBalance;

float interest accrued = 0.0;
strepy(retrieve_CustMame,newRec.getName (retrieve AccNo)) ;
strcpy(retrieve Address,newRec.getAddress(retrieve_Accho)) ;
iBalance = newRec.getBalance(retrieve Accho);

cout =<" Customer Mame : " <<retrieve_CustMame;
cout =<"\n Customer Address: " <<retrieve_Address ;
cout <<"yn Bank Balance: * =<iBalance ;

char tranDetails, typeTransaction[10], tm[10] ;
float t amount, t amt ;

534e Object-Oriented Programming with C++

cout =<"\n Please enter D for Deposit or W for Withdrawal of Amount : * ;
tranDetails = getche() ;
if({tranDetails == '0") {
cout=="Y\nkn You have pressed 0 to Exit.";
getch();
return;
]
tranDetails = toupper(tranDetails) ;
| while (tranDetails I= "W' && tranDetails != 'D') ;

do
{
cout <<"\n The Transaction type is either Cash or Chegque..\n" ;
check = 1 ;
cout =<" (Cash/Cheque) : " ;
gets (typeTransaction) ;
strupr(typeTransaction);
if(typeTransaction[0] == "0') |
cout=="Ynyn You have pressed 0 to Exit.";
getch();
return;
I
if [strlen{typeTransaction) = 1 || (stromp(typeTransaction,CASH") &&
stremp(typeTransaction, "CHEQUE")))
{
check = 0 ;
cout<<"Yn The Transaction is invalid. Please enter either
Cash or Cheque. ‘\n" ;
getch() ;

3 !
} while {!check);

do
(
cout =<"\n Please enter the Tramsaction Amount : \n";
check = 1 ;
cout =<" Amount :© Hs. "
gets(tm) ;

t amt = atof(tm) ;
t amount = t_amt ;

if (t_amount = 1 || (tranDetails == "W" && t_amount = jBalance))

Hidden page

536e Ohbject-Oriented Programming with C++

tran_acc = atei(t acc) ; /* changing account no. to integer type. */
retrieve AccNo = tram_acc ;
clrser() :
dispRecords newRec ;
if ([InewRec.accountExists(retrieve AccNo))
{
cout <=<"\t\n You have entered an invalid Account or it does not exist.\n";
cout =<" Please try again.\n";
getch();
return ;
]
cout <<"\n Press 0 to go back to previous menuin" ;
cout=<"\n Closing this Account.\n";
:uu tq{liti (A a bRt s i a s i e dn b sdedndndndy II'-" ‘I.n. :
int dayl, monthl, yearl ;
struct date dateval;
getdate(&dateval);
dayl = dateval.da day ;
monthl = dateval.da_mon ;
yearl = dateval.da year ;

cout <<"Date: “<<dayl <<"/* <<monthl <<"/" <<yearl<<"\n";

char choice;

newRec.display(retrieve AccMNo); /*Displaying the Account Details on the basis of
the retrieved Account MNumber*/

do
{

cout =<"\n Are you sure you want to close this Account? (y/n): ";
choice = getche();
choice = toupper(choice)

} while (choice I= 'N' &4 choice I= 'Y');

if (choice == 'N' || choice == 'n'} |{
cout=="\n The Account is mot closed.\n";
getch();
return;
1
newRec.deleteAccount (retrieve_AccNo);
deleteAccount (retrieve_AccNo);
cout =<*\tin\n Record Deleted Successfully.\n";
cout =<" Please continue with the application....\n";
getch();

}

/* The Login method checks for the username and the password for accessing the
Banking Application*/

Appendix A

int login (void)

{

char wsername[9] ,ch;

char usernamel[]="banking®;

int 1=0;

char a,b[9],pass[]="tatahill";

cout=<"Yn\n";

cout=<"Yn\t Login to the Banking Applicatiom.\n";

in i kol i oo ik oo ol ol ol o v o o o ol il ol o ool ik e n
cout=="\t \n":

cout=<"\nYn\tPlease enter Username I H
cip == username;

cout=="Y\n'n\tPlease enter Password to authenticate yourself :

fflush{stdin);
do

{

ch=getch();

iflisalnumich))
{
b[i]=ch;
Coutes® ¥,
1+
I

else

if(ch=="\r")
bli]="\0";
else if{ch=="\b')
{
1=
cout=<*YbY\b" ;
]

}
while(chl="\r');

bli]1="\0";
fflush(stdin);

if({strcmp(b,pass)==0)h&(strcmp({usernamel ,username)==0))

{

cout==*"YnYn'\t You have entered successfully\nn";

return{l);

2537

}

else

{ .
cout=<*\thn\n Incorrect Username or Password.”;
cout<<"\n";

return(0);

Hidden page

Appendix B

| Executing Turbo C++ |

B.1

Introduction

All programs in this book were developed and run under Turbo C++ compiler Version 3.0, in
an MS5-DOS environment on an IBM PC compatible computer. We shall discuss briefly, in
this Appendix, the creation and execution of C++ programs under Turbo C++ system.

IB.Z Creation and Execution of Programs

Executing a computer program written in any high-level language involves several steps,

as listed below:

1. Develop the program [(source code).

2. Select a suitable file name under which you would like to store the program.

3. Create the program in the computer and save it under the filename you have de-
cided. This file is known as source code file,

4. Compile the source code. The file containing the translated code is called object
eode file. If there are any errors, debug them and compile the program again.

5. Link the object code with other library code that are required for execution. The
resulting code is called the executable code. If there are errors in linking, correct
them compile the program again.

6. Run the executable code and obtain the results, if there are no errors.

7. Debug the program, if errors are found in the output.

8., Go to Step 4 and repeat the process again.

These steps are illustrated in Fig. B.1. The exact steps depend upon the program
environment and the compiler used. But, they will resemble the steps described above.

540 Object-Oriented Programming with C++

Frogram !l File narme |

COMP DEBUG P—

ILE
1 |
| i
Compiler Yes | |
Mo) |
cod

&l
Qject
1

e fila |

s
s z
ogars |

1
N
Linkgsr
frors

Yas

RESULTS
)

Fig. B.1 < Program development and execuhion i

Turbe C++ and Borland C++ are the two most popular C++ compilers. They provide ideal
platforms for learning and developing C++ programs. In general, both Turbo C++ and Borland
C++ work the same way, except some additional features supported by Borland C++ which
are outside the scope our discussions. Therefore, whatever we discuss here about Turbo
C++ applies to Borland C++ as well.

Copyrighted maierial

Appendix B ® 541

IH.3 Turbo C++

Turbo C++ provides a powerful environment called Integrated Development Environmeni
(IDE) for creating and executing a program. The IDE is completely menu-driven and allows
the user to create, edit, compile and run programs using what are known as dialogue
boxes. These operations are controlled by single keystrokes and easy-to-use menus.

We first use the editor to create the source code file, then compile, link and finally run it.
Turbo C++ provides error messages, in case errors are detected. We have to correct the
errors and compile the program again.

IB.-i IDE Screen

It is important to be familiar with the details of the IDE screen that will be extensively used
in the program development and execution. When we invoke the Turbo C++, the IDE screen
will be displayed as shown in Fig. B.2. Az seen from the figure, this screen contains four
parts:

® Main menu (top ling)
® Editor window
® Message window
Status line (bottom line)
= Filg Edit Search Run Comgpie Debug Project Options Window Help
3 Main
WONAME 00.CPP 1 menu
Editos
windiow
— 1:1
Message 2 -
KMassage
windiow
F1Help F2Sawa F3 OpenAH-FE Compile FA Make F10 Manu i:nﬂ

Fig. B2 « IDE opening screen

542 e Object-Orented Programming with C++

Main Menu

The main menu lists a number of items that are required for the program development and
execution. They are summarized in Table B.1.

Table B.1 Main menu ifems

i) : : e
fﬁ.—ﬁ#ﬂw&:*. o i e R T g B] i RHE L -:,'_;..

_ Displays the version number, clears or restores the screen, and execute
various utility programmes supplied with Turbo C++

File Loads and saves filea, handless directories invokes DOS, and exists
Turbo C+

Edit Performe various editing functions

Search Performs various text searches and replacements

Rumn Complies, links and runs the program currently loaded in the environ-
ment

Compile Compiles the program currently in the environment

Debug Bets various debugger options, including setting break points

Projects Manages multifile projects

Options Sets various compiler, linker, and environmental options

Window Controla the way various windows are displaved

Help Activates the context—-sensitive Help system

The matn ment can be activated by pressing the F10 key. When we select an item on the
main menu, a puli-down menu, containing various options, is displayed. This allows us
to select an action that relates to the main menu item.

Editor Window

The editor window is the place for creating the source code of C++ programs. This window
is named NONAMEOQDQ.CPP. This is the temporary name given to a file which can be changed
while we save the file.

Message Window
The other window on the screen is called the message window where various messages are

displayed. The messages may be compiler and linker messages and error messages generated
by the compiler.

Status Line

The status line which is displayed at the bottom of the sereen gives the status of the current
activity on the sereen. For example, when we are working with FILE option of main menu,
the status line displays the following:

F1 Help | Locate and open a file

Appendix B @543

|ﬂ.5 Invoking Turbo C+ +

Assuming that you have installed the Turbo C++ compiler eorrectly, go to the directory in
which you want to work. Then enter TC at the DOS system prompt:

C:>TC

and press RETURN. This will place you into the IDE screen as shown in Fig. B.2. Now, you
are ready to create your program.

Iﬂ.ﬁ Creating Source Code File

Unce you are in the IDE screen, it is simple to create and save a program. The F10 key will
take you to main menu and then move the cursor to File. This will display the file dialogue
window containing various options for file operations as shown in Fig. B.3. The options
include, among others, opening an existing file, creating a new file and saving the new file.

= File Edit Search Run Compile Debug Project Oplions Window Halp

1 New — NOMAME 00,CPP 1
Open.. F3
Save F2

Save as ...
Save all

Changa dir ...
Print

DOS shell

i Al + X
— 1:1

F1 Hedp | Locate and open afile

Fig. B3 «. File dialogue unndpur

Since you want to create a new file, move the cursor to New option. This opens up a blank
window called editing window and places the cursor inside this window. Now the system is
ready to receive the program statements as shown in Fig. B.4.

Hidden page

Hidden page

546e

Object-Oriented Programming with Céd

* Flle Edit Search Run Compile Debug Project Opbions Window Help

—

1 — |

- TEST.CPP
Hinclude <iostresm. k>
rreing)
{
coul << “Ce+ g batier than L~
resdurn 0
}
Compiling
Main file . \TEST.CPP
Compding: EDIT OR -~ TEST.CPP
Total File
Lines complled: 882 883
Warmnings : 0 0
1] Errors ;0 0
Avallable mamory | 10408
|
Success : Press any key

F1 Help Al-FB Mext hMsg AlL-FT Prev Meg AR-FS Compile F2 Make F10 Men

R

——

Fig. B.T <« Compilation window l

IB-? Running the Program

You have reached successfully the final stage of your excitement. Now, select the Run from
the main menu and again Run from the run dialogue window (See Fig. B.8). You will see
the screen flicker briefly. Surprisingly, no output is displayed. Where has the output gone?
It has gone to a place known as user screen.

In order to see the user screen, select window from the main menu and then select user
gereen from the window dialogue menu (See Fig.B.9). The IDE screen will disappear and
the user screen is displayed containing output of the program test.cpp as follows:

C=>TC

Note that, at this point, you are outside the IDE. To return to IDE, press RETURN key.

Copyrighted material

Appendix B

@547

= File Edit Search Run Compile Debug Project Options Window Help

#include <iostream= Run Cirl+Fg
main{) Program reset Ciri+F2
! Ga o cursor Fd
cout << " Ce+is Tewca into F7
raturn Slep over Fa
} Arguments
1:1
Message 2

F1 Halp | Execuis or single-step through a program

Fig. B8 e Run dislogie mems” |

= File Edit Search Run Compile Debug Project Options Window Help

SizaMove Cird+F5
Binchude <iostream, h> Zoom F5

main(} Tile
{ Cascade
cout << G+ Ig betler than C°) Mext F&
reibuen O Closa Alt+F3
1 Clase all

Message

Output

Waitch

User Screen AlR+FS
Registar

- Project

— 1:1 Projec t Notes

Messaga ={ List all AR+

F1 Help | Make the next window acthve

Copyrighted material

548 e Object-Oriented Programming with C#+

Eln Managing Errors

It iz rare that a program runs succeasfully the first time itself. It iz common to make some
syntax errors while preparing the program or during typing. Fortunately, all such errors
are detected by the compiler or linker.

Compiler Errors

All syntax errors will be detected by the compiler. For example, if you have missed the
semicolon at the end of the return statement in test.cpp program, the following message
will be displayed in the message window.

Error...\TEST.CPP 6 Statement missing;
Warning...\TEST.CPP 7: Function should return a value

The number 6 is the possible line in the program where the error has occurred. The
screen now will look like the one in Fig. B.10.

= File Edit Search Run Compile Debug Project Options Window Help
TEST.CPP ; 1

#Hinclude <sdstneam, h>
maing)

{
cout << *C++ ig batier than C™

return 0
}

—_— 11

Message 2 —
Compiling _\TEST.CPP:

Errar ATEST.CPP 6: Statemant migsing;

Waming _\TEST.CPP T: Functions should raturn valus

F1 Help AH-FB Nex! Msg AR FT Prev Msg A-F3 Compile F9 Make F10 Menu

Fig. B10 <= Display of error message I

Press ENTER key to go to Edit window that contains your program. Correct the errors
and then compile and run the program again. Hopefully, you will obtain the desired results.

Appendix B ® 549

Linker Errors

It iz also possible to have errors during the linking process. For instance, you may not have
included the file iostream. k. The program will compile correctly, but will fail to link. It will
display an error message in the linking window. Press any key to see the message in the
message window,

Run-time Errors

Remember compiling and linking successfully do not always guaranty the correct results.
Sometimes, the results may be wrong due logical errors or due to errors such as stack
overflow. System might display the errors such as nuli pointer assignment. You must consult

the manual for the meaning of such errors and modify the program accordingly.

Iﬂ.ll Handling an Existing File

After saving your file to disk, your file has become a part of the list of files stored in the disk.
How do we retrieve such files and execute the programs written to them? You ean do this in
two ways:

1. Under DOS prompt
2. Under IDE

Under DOS prompt, you can invoke as follows:
C>TC TEST.CPP

Remember to type the complete and correct name of the file with .cpp extension. This
command first brings Turbo C++ IDE and then loads edit window containing the file
test.cpp.

If you are working under IDE, then select open option from the file menu. This will
prompt yvou for a file name and then loads the file as you respond with the correct file name,
Now vou can edit the program, compile it and execute it as before.

I'BJ.IE Some Shortcuts

It is possible to combine the two steps of compiling and linking into one. This can be achieved
by selecting Make EXE file from the compile dialogue window.

We can shorten the process by combining the execution step as well with the above step.
In this case, we must select Run option from the run dialogue window. This causes the
program to be compiled, linked and executed.

550@ Object-Oriented Programming with C++

Many common operations can be activated directly without going through the main
menu, again and again. Turbo C++ supports what are known as hot keys to provide these
shortcuts. A list of hot keys and their functions are given Table B.2. We can use them
whenever necessary.

e —

Hot Key. Mocning | TR
F1 Activates the online Help system
F2 Baves the file currently being edited
F3 Loads a file
F4 Executives the program unit the cursor is reached
F5 Looms the active window
Fa Bwitches between windows
F7 Traces program; skips function calls
Fa Traces program; skips function calls
Fa Compiles and links programs
F10o Activates the main menu
ALT-O Lists open windows
ALT-n Activates window n (n must be 1 through 9)
ALT-F1 Ehowsa the previous help screen
ALT-F35 Deletes the active window
ALT-F4 Opens an Inapector window
ALT-F5 Dpens an Inspector window
ALT-F7 _ Previous error
ALT-F8 Mext error
ALT-F9 Compiles fle to OB
ALT-SPACEBAR Activates the main menu
ALT-C Activates the Compile menu
ALT-D Activates the Debug menu
ALT-E Activates the Edit menu
ALT-F Activates the File menu
ALT-H Activates the Help menu
ALT-O Activates the Options menu
ALT-F Activates the Project menu
ALT-R Activates the Hun menu
ALT-B Activates the Run menu
ALT-W Activates the Window menu
(Conid)

Copyrighted maierial

Hidden page

Appendix C

Executing C++ Under ‘

‘ Windows

C.1 Imtroduction

C++ is one of the most popular languages due to its power and portability. It is available for
different operating svstems such as DOS, 08/2, UNIX, Windows and many others. C++
programs when implemented under Windows are called Visual C++ programs. Therefore,
there is no difference between C++ and Visual C++ programs in terms of programming but
the difference lies in terms of implementation.

A C++ compiler designed for implementation under Windows is known as Visual C++. A
C++ program running under MS-DOS will also run successfully under Windows. This i=s
because, the rules of programming are the same; only the environment of implementation is
different and is shown in Fig. C.1.

L4+ Implementation

Conventional C++ Visual C++ !

.- Fig. C.1 - & C++ Implemeniation environmenis

Appendix C #553

A C++ programmer can easily become a Visual C++ programmer if he knows how to use
the implementation tools of his Visual C++ system. In this Appendix, we introduce the
features of Microsoft Visual C++ and discuss how to create, compile and execute C++ programs

under Windows.

The Microsoft Corporation has introduced a Windows based C++ development environment
named as Microsoft Visual C++ (MSVC). This development environment integrates a set
of tools that enable a programmer to create and run C++ programs with ease and style.
Microsoft calls this integrated development environment (IDE) as Visual Workbench.
Microsoft Visual Studio, a product sold by Microsoft Corporation, also includes Visual
C++, in addition to other tools like Visual Basie, Visual J++, Visual Foxpro, ete.

IE.E The Visual Workbench

It is important to be familiar with the Visual Workbench that will be extensively used in the
program development. The Visual Workbench is a visual user interface designed to help
implement C++ programs. This containz various tools that are required for creating, editing,
compiling, linking and running of C++ programs under Windows. These tools include File,
Edit, Search, Project, Resource, Debug, Tools, Window and Help.

. Microsot Weaual Cos - [Testl)
[f Ed e et Proct fuld Trok Wiedss Heb e =18 ——— Title bar
T B o OEE A e ————
HzEHd —-EL“ "-‘Kﬂ-‘_\h T Main manu
|) ow o
“"I ! - ™ Tool bar
. 4 Docment
—— window
D | Developer
i = VWF'EM} wincow
il ’
F e —————— — ...‘
1 . — _ Message
window
[#7 tsin {Tibugy s, FrndmFien 1 5 FradmFiemd] 400 1
Faaty ni. ol Status line

Fig. C.2 & Visual workbench epening screem

554e Object-Oriented Programming with C++

When we invoke the Microsoft Visual C++ (Version 6.0), the initial screen of the Visual
Workbench will be displayed as shown in Fig. C.2. As seen from the figure, this screen
contains five parta: 1) Title bar 2) Main menu 3) Tool bar 4) Developer window 5) Status
line.

Main Menn
The main menu lists a number of items that are required for program development and
execution. They are summarized in Table C.1.

Table C.1 Main menu of visual workbench

File Creates a new file or opens an existing file for editing. Closes and saves files. Exits
the Visual Workbench.

Edit Performs various editing functions, such as searching, deleting, copving, cutting
and pasting.

Wiew Enable different views of sereen, output, workspace,

Insert Insertion of Graphics resources like pictures, icons, HTML, ete, can be done,

Project Sets up and edits a project (a list of files).

Build Compiles the source code in the active window,. Builds an executable file. Detects
ETrOrs,

Tesnls Customizes the environment, the editors and the debugger

Window Controls the visibility of various Windows involved in an application development.

Help Provides help about using Visual C++ through Microsoft Developer Metwork
Library (MSDN Library). Online help also can be received provided an Internet
connection.

Once a main menu item is selected, a pull-down menu, containing various options, is
displayed. This allows us to select an action/ecommand that relates to the main menu item.

It iz likely that an option in the pull-down menu is grayed. This means that the particular
option is currently not available or not valid. For example, the Save option in the File menu
will be grayved if the workspace is empty.

Some options are followed by three periods (...). Such an option, when selected, will display
a submenu known as dialog box suggesting that some more input iz required for that option
to get implemented. Options followed by the symbol p means we have to select a choice
from the list.

Tool Bar

The tool bar resides just below the main menu. This provides a shortcut access to many of
the main menu's options with a single mouse click. Figure. C.3 shows sgome important tool

Appendix C -8 555

bar eommands that ean be used from anywhere within the Workbench. Several tool bars like
Standard, Build, Edit, Wizard Bar, ete. are available which can be enabled/disabled from the
screen using Tools/Customize option.

*.. Microzolt Visual Ces - [Tenll]

Lﬁﬁiﬂmmwﬂﬂlﬂfmﬂm

rum%rm Al
e ST s

| S -

Open new edit windows Open an existing file Saves current file

Fig. C:3 <> Tool bar actions I

Developer Window

Just below the tool bar is the developer window. It is initially divided into three parts as
shown in Fig. C.2.

® View Panec (on the left)
® Document window (on the right)
® Message window (at the bottom)

The view pane has three tabs for ClassView, FileView and InfoView. Once we have a
project going, the ClassView will show us the class hierarchy and the FileView will show us
the files used. InfoView will allow us to navigate through the documentation.

The document window, also known as workspace, i= the place where we enter or display
our programs. The message window displays messages such as warnings and errors when
we compile the programs.

Accessing Menu ltems
Before we proceed further, it is important to know how to aceess the menu items. There are
two ways of accomplishing this:

1. Using the mouse
2. Using the keyboard

Mouse Actions

Using the mouse for accessing an item is the most commen approach in Windows
programming. We can perform the following actions with the mouse:

g, P [R
L "..l'r..":l'll'.|.| =L

1 material

556e Ohject-Oriented Programming with C++

® Move the mouse pointer to a desired location by moving the mouse without pressing
any button,
#& Click the left mouse button when the pointer is over the preferred option.

Keyboard Actions

Though the use of mouse is a must for Windows-based applications, the accessing can also
be done through keyboard. Simultaneously pressing the ALT key and the underscored letter
of the menu item required will activate the corresponding pull-down menu. The underscored
latter iz known ag hot key. Once a pull-down menu iz displayed, using the down/up arrow
keys an option can be highlighted and then pressing the ENTER key will activate that
option.

Some of the options in a pull-down menu can be directly activated by using their hot key
combinations shown against these options. For example, Ctrl+N is the hot kev combination
for the New option in the File menu. Similarly by pressing Ctrl+S, a file can be saved
without using pull-down menu. This shortcut approach can be used from anywhere within
the Visual Workbench.

IC.S Implementing Visual C++ Programs

Developing and implementing a computer program written in any high-level language
involves several steps already described in Appendix B.

ICJi Creating a Source Code File

When vou have installed the Microsoft Visual C++ compiler correctly, vou can start the
Visual Workbench from Microsoft Windows. To start the Visual Workbench, simply select
the Visual C++ icon from the Programs group and click on it. This will bring up the Visual
Workbench screen as shown in Fig. C.2. Onece yvou are in the Visual Workbench screen, it is
simple to create and save a program.

Entering the Program

The first thing you need to do before entering a program is to open a new file. Select the File
menu from the main menu. This will display a pull-down file menu as shown in Fig. C.4.
The options include, among others, opening an existing file, creating a new file and saving
the new file.

Since, you want to create a new file, choose New ... option which will bring up the New
dialog box as shown in Fig. C.5 displaying a list of different types of programming files.

Appendix C @557

. Microsolt Visgal Cas ||.|_||:|'| ‘I
|[B)/ e £t Vow ot Froject Buid Took Window Heb _ alBlx
e el B = -1
S e Bpen Cubsd =
e '-H;;-'! ._i T E
[
Elime Dis
Save Au
& swais
Page Setun.
QB DeRL
— Fimcart Fies v d =
Recent Woakspaces » | {]4] | i
Eﬂ = - = — — ::
s (DabE) FedAE T} FrdnreZ N« | o
[£ . [ARTGor [REE o 15wl FEAn

Fig. C.4 < Visual C++ Workbench file memu |

For entering a new program, select File/C++ Source File option and then click on the OK
button. This opens up a blank window (similar to Fig. C.2} with the window title as 'Microsoft
Visual C++ - [CPP|' and places the cursor inside this edit window. Now the system is ready
to receive the program statements as shown in Fig. C.6.

Saving the Program

Once the typing is completed, you are ready to execute the program. Although a program
can be compiled and run before it is saved, it is always advisable to gave the program in a file
before compilation. You can do so by doing one of the following:

1. Using File/Save command
2. Pressing the Ctrl+8 hot key combination
3, Clicking on the third button from left on the toolbar.

Hidden page

Appendix € —e 559

*.. Miciogolt Vivual Cas - [Cpp =]

ﬂﬁuuvmnmnmamxmwﬂm =8l
@ SES me |2 DEE R =l 'w
l | demx 1d
al s THTIRG & STRIMN al
finclude iostream) B
using hnsmespeces shd
10t maznt)
! somt 64 TC44 1g better than O "

F
3
T8 et {Tinkag), FrdinFiee 1) Fnd i Fised 1] 4] | ™
Alaady Ln I3 Gl WEL oo T0rTe R
Fig. C.6 & Edit window with the sample progran
Table C.2 Three ways of compiling
. -""'T" T R
' Commiand ©. . detlom; HIT S nt Sl i__-é:ﬁ;iff_ o S
Build/Compile Compiles a single program ﬁl& The result is an ﬂh]l.‘-l-‘t- file. This option

18 used when we want to check a particular file for syntax errors. Note

that it does not hink and therefore does not produce any executable Gle.
BuildBuild Compiles all the modifiedmew source files and then links all the object

files to create a new executable file, When we are working on a project, we

usually use this command. That 15 because we may change a few things
here and there and want to compile only those modified programs.

BuildRebuild All Compiles all the filea in a project and links them together to create
an executable file. This eommand is usually used when we want to make
gure that everything in the project has been built again.

The compile option in the Build menu when selected will compile the source code into an
executable code if there is no errors or warnings as shown in Fig. C.7.

560@ Ohject-Oriented Programming with C++

to st - Microsodt Visus Les - || ext cpp]

[Fie Ecl Yeew besd Proiect Buld Tooh 'Wedow Help o - |
A FLP L Re - MEE R dw

|-...

: #If i Dok =] P N

I 1

T T
(00 Tesl olaases
N 9% B 1

- E I3 B » N -
Caia t 4+ 15 Detter than]

+ | L
- :I'm.'.-'m‘E - B] File'viesn | | |41 Ll;l

Lonbigural 1omn lemt Wimdd Debug -

Lab, Lol I IREAL:

Fig. C.7 & Output windowo after compiling and linking |

While compiling a C++ source file the Visual C++ application will prompt a message to
build a new workspace. Workspace is nothing but an area where we can have a number of
source files, their compilation files and linking files saved altogether known as Project. This
will be used when we have to create a application with multiple source files.

Executable File

The executable file TEST EXE will be added to the Build menu as shown in the Fig. C.8
after a zero error{s) and zero warning(s) compilation.

The output window indicates that there are no warnings and no errors. The Compile
command has successfully generated the executable file TEST.EXE.

C.6 Running the Program

You have reached successfully the final stage of vour excitement. Now, to run the program,
click the Execute TEST.EXE option in Build menu, The output will be generated in a new
windows as shown in Fig. C.9.

Copyrighted material

Appendix C

"o Tesl - Micinselt Vsl L - |18l cp) !
¥t o ot Bl [Lok e e L aleix
I 1y g & Compie Testepp i 7 =
.“{J :ﬂ_ n“- h_ i ikl T st s FF -
[JTeu - 22 e iy B 48 RS TR

— = —— a4 Bk Byt

- m Tmeh chawwes Clgan e |

St g b
Dietuagges Flmmnd e Croprescron

--.Illi Ilt'.re:r tham © 5"

Sal fpvee Dgnbhpaseon

s
Teat cpp
|
|

Tezt oby = 0 errori=). O warningis)
=

:_:glﬂxw=:{m1m.n.ﬂn.r.kMrs-.z IR
InT o1 PG S0 s R

Eimcriipy thes procdsam

Fig. C.B & Butld menu after successful compilation

Fig. C9 < Output generated

@ 561

562e Object-Oriented Programming with C++

I C.7 Managing Errors

It is rare that a program runs successfully the first time itself. When the program contains
errors, they are displayed in the message window as shown in Fig, C.10,

Yo Test - Miciozsoft Visual Ces - [Test.cppl

'S Fle Edl Ww lrest Prowct Bul Tock Window Heb =% =
2l | @ e By & 20w Oz |(E R | Gal =]
iie." ﬂi'--n.:.-.L-:I'.u; . _3 E:.I | ! rl
2 = r BRINTIHG & STRIHG 3 =
ﬂ. -
@ | est classes) =
Finclude <{iostrean
A5109 LANESDACE std
amt maani
== T *C++ 1% betier than . wp®

raturn

|
"'il'_‘lus?’n-w]j']me] . fel} ﬂ'ﬂ
Lonl iguration T 1 Uindd |:T-.|_._q:|. ———————— [-

ki

Compiling
Te=st cpp
LMy Docunssts~]est cpplill) arror L2143 syntax &rror niszing b= o
lError sxecuting cl. exe

Te=xt oby — 1 arror(=s), 0 warningis)

|EIeh, ura (Debug s FndinFles 1 5 odmories2 oot | o
n8 a1 [REC |COL [5VA [READ

Fig. C.10 <> Outpul window error messages

You can double-click on a syntax error in the message window to go to the line containing
that problem. Fix all the errors, recompile and execute the program.

IEB ?thcr Features

Windows programmers now have a wider range of tools that can be used for the development
of object-oriented systems. Microsoft has provided, among others, the following three tools
that would benefit the programmers:

® Foundation Clasa Library

Copyrighted material

Appendix C —& 563

® Application Wizard
#® (Class Wizard

The Microsoft Foundation Class (MFC) library contains a set of powerful tools and provides
the users with easy-to-use objects. Proper use of MFC library would reduce the length of
code and development time of an applicution.

The AppWizard, short for Application Wizard, helps us to define the fundamental structure
of a program and to create initial applicationz with desired features. However, remember
that it only provides a framework and the actual code for a particular application should be
written by us.

The ClassWizard, a close associate of the AppWizard, permits us to add classes or customize
existing classes. The ClassWizard is normally used after designing the framework using the
AppWizard, -

It is the power of the Wizards that make the Microsoft Visual C++ so useful and popular.

It is therefore important that you are familiar with these tools. You must consult appropriate
reference material for complete details.

Copyrighted material

Appendix D

Glossary of ANSI C++
Keywords

aAsm It is to embed the assembly language statements in C++ programs. Its use
is implementation dependent.
auto It is a storage class specifier for the local variables. An auto variable is

vigible only in the block or function where it is declared. All the local
variables are of type auto by default,

hool It is a data type and is used to hold a Boolean value, true or false.

break A break statement is used to cause an exit from the loop and switch
statements. It is used to provide labels in a switch statement.

catch catch is used to describe the exception handler code that catches the
exceptions (unusual conditions in the program).

char It is a fundamental data type and is used to declare character variables
and arrays. '

class class iz used to create user-defined data types. It binds together data and

functions that operate on them. Class variables known as objects are the
building blocks of OOF in C++.

const It is a data type qualifier. A data type qualified as const may not be
maodified by the program.

const_cast It is a casting operator used to explicitly override const or volatile objects.

continue It causes skipping of statements till the end of a loop in which it appears.
It is similar to saying “go to end of loop”.

default It is a default label in a switch statement. The control 15 transferred to
this statement when none of the case labels match the expressions in
awitch.

delete It is an operator used to remove the objects from memory that were created

using new operator,

double

dynamic_cast

else

explicit
export
extern
false
loat

for

Appendix D # 565

do is a control statement that creates a leop ufupernhﬂna It is used with
another keyword while in the form:
do
{
statements
}
while(expression);
The loop is terminated when the expression becomes zero.
It is a floating-point data types specifier. We use this specification to double
the number of digits after decimal point of a floating-point value.
It is a casting operator used to cast the type of an object at runtime. Its
main application is to perform casts on polymorphie objects.
else is used to specify an alternative path in a two-way branch control of
execution. It is used with if statement in the form:
if(expression)
statement-1;
else
statement-2;

The statement-1 is executed if expression is nonzero; otherwise statement-
2 18 executed,
It iz used to create a user-defined integer data type. Example:

enum E{el,e?,...}:
where ¢l, 2, are enumerators which take integer values. E is a data
type and can be used to declare variables of its type.
It is a specifier to a constructor. A construetor declared as E.Ipl.ill'it. cammnot
perform implicit conversion.
It is used to instantiate non-inline template classes and functions from
separate files,
extern is a storage class specifier which informs the compiler that the
variable so declared is defined in another source file.
It i= a Boolean type constant. It can be assigned to only a bool type variable.
The default numeric value of false is 0.
It iz a fundamental data type and i used to declare a variable to store a
single-point precision value,
for is a control statement and is used to create a loop of iterative operations.
It takes the form:

for(el; e2; e3) statement;
The statement is executed until the expression 2 becomes zero. The

expression €1 is evaluated once in the beginning and e3 is evaluated at
the end of every iteration.

Copyrighte

d material

566 e Object-Oriented Programming with C++

friend friend declares a function as a friend of the class where it is declared. A
function can be declared as a friend to more than one class. A friend
function, although defined like a normal function, can have access to all
the members of a class to which it is declared as friend.

goto goto is a transfer statement that enables us to skip a group of statements
unconditionally. This statement is very rarely used.
if if is a control statement that is used to test an expression and transfer the

control to a particular statement depending upon the value of expression.
if statement may take one of the following forms:

(i} if (expression)
statement-1;
statement-2;
(ii) if (expression)
statement-1;
else
statement-2;
In form (i), if the expression is nonzero (true), statement-1 is executed
and then statement-2 is executed. If the expression is zero (false),
statement-1 is skipped. In form (ii), if the expression is nonzero, statement-
1 is executed and statement-2 will be skipped; if it is zero, statement-2 is
executed and statement-1 is skipped.

inline inline is a function specifier which specifies to the compiler that the
function definition should be substituted in all places where the function
iz called.

int It is one of the basic data types and is used to declare a variable that
would be assigned integer values.

long long is a data type modifier that can be applied to some of the basic data
types to increase their size. When used alone az shown below, the variable
becomes signed

long int.
long m;
mutable It is a data type modifier. A data item declared mutable may be modified
even if it is a member of a const object or const function.
namespace It is used to define a scope that could hold global identifiers. Example:
namespace naome
{

Declaration of identifiers

}

new It is an operator used for allocating memory dvnamically from free store.
We can use new in place of mallee() function.

Copyrighted material

public

register

Appendix D @ 567

operator is used to define an operator function for overloading an operator
for use with class objects. Example:

int operator*(vector &vl, vector BvZ);
It is a visibility specifier for class members. A member listed under private
is not accessible to any function other than the member functions of the
clazs in which it is used.
Like private, protected is also a visibility specifier for class members. It
makes a member accessible not only to the members of the class but also
to the members of the classes derived from it.
This is the third visibility specifier for the class members. A member
declared as public in a class is accessibld publicly. That is, any function
can access a public member. '
register is a storage class specifier for integer data types. It tells the
compiler that the object (variable) should be accessible as quickly as
poasible. Normally, a CPU register is used to store such variables,

reinterpret_cast It is a casting operator and is used to change one type into a fundamen

return

short

signed

static_cast

tally different type.
It is used to mark the end of a function execution and to transfer the
control back to the calling function. It can also return a value of an
expreasion to the calling function. Example:

return(expression);
Similar to long, it is also a data type modifier applied to integer base
types. When used alone with a variable, it means the variable is signed
short int.
It is a gualifier used with character and integer base type variables to
indicate that the variables are stored with the sign. The high-order bit is
used to store the sign bit, 0 meaning positive, 1 meaning negative. A
signed char can take values between =127 to +127 whereas an unsigned
char can hold values from 0 to 255. The default integer declaration assumes
a signed number.
sizeof i= an operator used to obtain the size of a type or an object, in
bytes. Example:

int m = sizeof(char);

int m = sizeof(x);
where x is an ohject or variable.
static iz a storage class specifier. This can be used on both the local and
global variables, but with a different meaning. When it is applied to a
local variable, permanent storage is created and it retains its value between
function calls in the program. When it is applied to a global variable, the
variable becomes internal to the file in which it is declared.
It is a casting operator and may be used for any standard conversion of
data types.

switeh

virtual

void

Object-Oriented Programmuing with C++

struct i= similar to a class and is used to create user-defined data types. It
can group together the data items and functions that operate on them. The
only difference between a class and struct is that, by default, the struct
members are public while the class members become private.
It is a control statement that provides a facility for multiway branching
from a particular point. Example:

switch (expression)

{

case labels

t
Depending on the value of expressgion, the control is transferred to a
particular label,
template is used to declare generic classes and functions.
It is a pointer that points to the current ohject. This can be used to access
the members of the current object with the help of the arrow oparator.
throw is used in the exception handling mechanism to *throw™ an exception
for further action.
It is a Boolean type constant. It can be assigned to only a bool type variable.
The default numeric value of true is 1.
It iz also a keyword used in the exception handling mechanizsm. It is used
to instruct the compiler to try a particular function.
typedef is used to give a new name to an existing data type. It is usually
used to write complex declarations easily.
It is an operator that can be used to obtain the types of unknown objects.
It is used to specify the type of template parameters.
It is similar to struct in declaration but is used to allocate storage for
several data items at the same location.
It is a namespace scope directive and is used to declare the accessibility of
identifiers declared within a namespace scope.
It iz a type modifier used with integer data types to tell the compiler that
the variables store non-negative values only. This means that the high-bit
is also used to store the value and therefore the size of the number may be
twice that of a signed number.
virtual is a qualifier used to declare a member function of a base class as
“virtual” in order to perform dynamic binding of the function. It is also
used to declare a base class as virtual when it is inherited by a elass through
multiple paths. This ensures that only one copy of the basge class members
are inherited.
void is a data type and is used to indicate the objects of unknown type.
Example:

void *ptr;

Appendix D #® 569

is a generic pointer that can be assigned a pointer of any type. It is also
used to declare a function that returns nothing. Another use is to indicate
that a function does not take any arguments. Example:

void print(void);

volatile It is a qualifier used in variable declarations. It indicates that the variable
may be modified by factors outside the control of the program.

wchar_t It is a character data type and is used to declare variables to hold 16-bit
wide characters.

while while is a control statement used to execute a set of statements repeatedly

depending on the outcome of a test. Example:
while (expression)

{

statements
1
The statements are executed until the expression becomes zero.

Copyrighted material

Appendix E

| C++ Operator Precedence |

The Table E.1 below lists all the operators supported by ANSI C++ according to their precedence
(i.e. order of evaluation). Operators listed first have higher precedence than those listed next.
Operators at the game level of precedence (between horizontal lines) evaluate either left to
right or right to left according to their associativity.

Table E.1 C++ Operators

Operator Mearing Associativity Ulze
global scope right to left CTIAME
class, namespace scope left to right name : - member
. direct member left to right object. member
- indirect member pointer->member
[1 gubgcript pointer|expr]
function call expriarg)
type construction typelexpr)
postfix increment mi++
— postfix decrement m
Sizeof aize of object right to left sizeof expr
sizeof size of type gizeof (Evpe)
++ prefix increment ++m
- prefix decrement m
typeid type identification typeid(expr)
const_cast specialized cast const_cast<expr=
dynamic_cast specialized cast dynamic_rcast<expr=
reinterpret_cast specialized cast reinterpret_cast<exprs>
static_cast spoecialized cast static_cast<exprs
] traditional cast (typejexpr
= one's complement ~gXpr

{Conid)

B4 |

now
new |)

delete

o

n
%

+ F o~

v ¥R

> 8 T

delete []

logical NOT

URATY Minus

unary plus

address of
dereference

create object

credate array

destroy object
destroy arrary
member derefarence
indirect member dereference
Multiply

Divide

Modulus

add
subtract

left shift

right shift

less than

leas than or equal to
greater than

greater than or equal to

equal

not equal

bitwise AND
hitwise XOR
bitwise OR

logical AND

logical OR
conditional expression
assignment
multiply updats
divide update
modulus update
add update
substract update
left shift update
right shift update
bitwise AND update
bitwise OR update
bitwise XDOR update
throw exception

COTTLITLA

Appendix E

right to left
left to right

left to right

left to right
left to right

left to right

left to right

left to right
left to right
left to right
left to right
left to right

left to right
right to left

right to left
left to right

*571

! expr

— Bxpr
+ expr

& walue

* expr

new type
new type []
delete ptr
delete [] ptr

object. *ptr_to_member
pte->*pir_to_member

exprl * expr2
exprl / expra

exprl % expr2
exprl + expr2
exprl — expr2

exprl =< exprid
exprl >> expr2

exprl < expr2
exprl <= expr2
exprl > expr
exprl == axpr2
exprl == gxpr2
exprl = expr2

exprl & expr2
exprl * expr2
exprl | expr2
expr] && expr2

exprl | | expr2

exprl T expr2: exprd
X = eXpr

X *= axpr

x /= expr

X W= expr
X += expr
X — = expr
N <<= gXPr
X 3= gxpr
X &= exXpr
% |= expr
x "= axpr
throw expr

exprl, expr2

Copyrighted material

Appendix F

| Points to Remember |

Computers use the binary number svstem which uses binary digits called as bits.

The basic unit of storage in a computer is a byvte represented by eight bits.

A computer language is a language uzed to give instructions to a computer.

A compiler translates instructions in programming language to instructions in

machine language.

Application software is a software that is designed to solve a particular problem or

to provide a particular service.

6. Systems software 15 a software that is designed to support the development and
execution of application programs.

7. Anoperating system is a system software that controls and manages the computing
resources such as the memory, the input and output devices, and the CPU.

8. An algorithm is a detailed, step-by-step procedure for solving a problem.

9, The goal of a software design 18 to produce software that 1s rehiable, understandahle,
cost effective, adaptable, and reusable.

10. Abstraction is the proceas of highlighting the ezsential, inherent aspects of an entity
while ignoring irrelevant details.

11. Encapsulation {(or information hiding) is the process of separating the external
aspects of an object from the internal implementation details which should be hidden
from other objects.

12. Modularity i the process of dividing a problem into smaller pieces so that each
smaller module can be dealt with individually.

13. Organizing a set of abstractions from most general to least general is known as
inheritance hierarchy.

14. Object-oriented programming is a paradigm in which a svstem 18 modeled as a set
of objecta that interact with each other.

15. In C++ an abstraction is formed by creating a class. A clase encapsulates the
attributes and behaviors of an object.

16. The data members of a class represent the attributes of a class.

L8

&

Copyrighted maierial

Appendix F #573

17.
18,

31,
32.

33.

34.

35,

The member functions of a class represent the behaviors of a class.

A base class is one from which other, more specialized classes are derived.

A derived elass is one that inherits properties from a base class.

Polymorphism is the capability of something to assume different forms. In an object-

oriented language, polvmorphism is provided by allowing a message or member

function to mean different things depending on the type of object that receives the

Mmessage,

Instantia“inn is the process of creating an object from a class.

We must use the statement #include <iostream> a preprocessor directive that

includes the necessary definitions for performing input and output operations.

The C++ operator << , called the insertion operator, 18 used to insert text into an

output stream.

The C++ operator >>, called the extraction operator, 1s used to insert text into an

input stream.

All C++ programs begin executing from the main. Function main returns an integer

value that indicates whether the program executed successfully or not. A value of

0 indicates suceessful execution, while the value 1 indicates that a problem or error

occurred during the execution of the program.

A value 18 returned from a function using the return statement. The statement
return 0;

returns the value 0,

A C++ ptyle comment begins with // and continues to the end of the line,

A C++ identifiers consists of a sequence of letters (upper and lowercase), digits, and

underscores. A valid name eannot begin with a digit character.

C++ identifiers are cage sensitive. For example, Name and name refer to two

different identifiers.

A variable must be defined before it can be used. Smart programmers give a variable

an initial value when it is defined.

The automatic conversion specifies that operands of type char or short are converted

to type int before proceeding with operation.

For an arithmetic operation involving two integral operands, the automatic

conversion specifies that when the operands have different types, the one that is

type int is converted to long and a long operation is performed to produce a long

result.

For an arithmetic operation involving two floating-point operands, the automatic

conversion specifies that when the operands are of different types, the operand

with lesser precision is converted to the type of the operand with greater precision.

A mixed-mode arithmetic expression involves integral and floating-point operands.

The integral operand is converted to the type of the floating-point operand, and the

appropriate floating-point operation is performed. -

The precedence rules of C++ define the order in which operators are applied to

operands. For the arithmetic operators, the precedence from highest to lowest is

unary plus and minus; multiplication, division, and modules; and addition and

subtraction.

It is a good programming practice to initialize a variable or an object when it is

declared.

Copyrighted material

Hidden page

Hidden page

Hidden page

Appendix F 8577

101. The location®f a variable can be obtained using the address operator &.

102. The literal 0 can be assigned to any pointer type object. In this context, the literal
) iz known as the null addreas,

103. The value of the object at a given location can be obtained using the indirection
operator * on the location.

104. The indirection operator produces an lvalue,

1056. The null address is not a location which can be dereferenced.

106, The member selector operator -> allows a particular member of object to be
dereferenced.

107. Pointer operators may be compared using the equality and relational operators.

108. The increment and decrement operators may be applied to pointer objects.

109. Pointers can be passed as reference parameters by using the indirection operator.

110. An array name is viewed by C++ ag constant pointer. This fact gives us flexibility in
which notation to use when accessing and modifving the values in a list.

111. Command-line parameters are communicated to programs using pointers.

112. We can define variables that are pointers to functions. Such variables are typically
used as function parameters, This type of parameter enables the function that uses
it to have preater flexibility in accomplishing its task.

113. Inecrement and decrement of pointers follow the pointer arithmetic rules. If ptr
points to the first element of an array, then ptr+l points to the second element.

114. The name of an array of type char contains the address of the first character of the
string.

115. When reading a string into a program, always use the addreas of the previously
allocated memory. This address can be in the form of an array name or a pointer
that has been initialized using new.

116. Structure members are publie by default while the class members are private by
default.

117. When accessing the class members, use the dot operator if the class identifier is the
name of the class and use the arrow operator if the identifier is the pointer to the
class.

118, Use delete only to delete the memory allocated by new.

119. Itis a good practice to declare the size of an array as a constant using the qualifier
const.

120. C++ supports two tvpes of parameters, namely, value parameters and reference
parameters.

121. When a parameter is passed by value, a copy of the variable is passed to the called
function. Any modifications made to the parameter by the called function change
the copy, not the original variable.

122, When a reference parameter is used, instead of passing a copy of the variable, a
reference to the original variable is passed. Any modifications made to the parameter
by the called function change the original variahle.

123. When an jostream object 12 passed to a function, either an extraction or an insertion
operation implicitly modifies the stream. Thus, stream objects should be passed a
reference,

124. A reason touse a reference parameter is for efficiency. When a class object is passed
by value, a copy of the object is passed. If the object is large, making a copy of it can

Copyrighted material

578e

125.

128.

127.

128.

129.

130.

131.

132.

133.

134,

135,

1386,

137,

138,

138,

140,
141.
142,
143.

144.

145.

Object-Oriented Programming with C++

be expensive in terms of execution time and memory space. Thus ohjects that are
large, or objects whose size is not known are often passed by reference. We can
ensure that the objects are not modified by using the const modifier.

A const modifier applied to a parameter declaration indicates that the function
may not change the object. If the function attempts to modify the object, the compiler
will report a compilation error.

A reference variable must be initialized when it is declared.

When you are returning an address from a function, never return the address of
local variable though, syntaetically, this is acceptable.

If a function call arpument does not match the type of a corresponding reference
parameter, C++ creates an anonvmous variable of the correct tvpe, assigns the
value of the argument to it and causes the reference parameter to refer the variable.
A function that returns a reference is actually an alias for the “referred-to” variable,
We can assign a value to a C++ function if the function returns a reference to a
variable. The value is assigned to the referved-to variable.

C++'s default parameter mechanism provides the ability to define a function so
that a parameter gets a default value if a eall to the function does not give a value
for that parameter.

Function overloading occurs when two or more function have the same name.,
The compiler resolves overloaded function calls by calling the function whose
parameters list best matches that of the call.

Casting expressions provide a facility to expheitly convert one type to another,

A ecast expression is useful when the programmer wants to foree the compiler to
perform a particular type of operation such as floating-point division rather than
integer division.

A cast expression 18 useful for converting the values that hbrary function return to
the appropriate type. This makes it clear to other programmers that the conversion
was intended. ’
An inline function must be defined before it 1s called.

An inline function reduces the function call overhead. Small functions are best
declared inline within a class.

In a multiple-file program, you can define an external variable in one and only one
file. All the other files using that variable have to declare it with the kevword
extern.

An abstract data type (ADT) is well-defined and complete data abstraction that
uses the principle of information-hiding.

An ADT allows the ereation and manipulation of objects in a natural manner.

If a function or operator can be defined such that it iz not a member of the class, then
do not make it a member. This practice makes a nonmember function or operator
generally independent of changes to the class’s implementation.

In C++, an abatract data type is implemented using classes, functions, and operators.
Constructors initialize objects of the class type. It i8 standard practice to endure
that every object has all of its data members appropriately initialized.

A default constructor is a constructor that requires no parameters,

146,

147.

148,

149,

150.

151.

154.

155.

156.

157.

158.

159.

1640.

161.
182,
163.

164.

Appendix F #579

A copy constructor initializes a new object to be a duplicate of a previously defined
source object. If a class does not define a copy constructor, the compiler automatically
supplies a version.

A member assignment operator copies a source object to the invoking target object
in an assignment statement. If a class does not define a member assignment operator,
the compiler automatically supplies a version.

‘When we call a member function, it uses the data members of the object used to

invoke the member function.

A class constructor, if defined, 1s called whenever a program creates an object of
that class,

When we create constructors for a class, we must provide a default constructor to
create uninitialized objects.

When we assign one object to another of the same elass, C++ copies the contents of
each data member of the source abject to the corresponding member of the target
object.

A member function operates upon the object used to invoke it, while a friend function
operates upon the objects passed to it as arguments.

The gualifier const appended to function prototype indicates that the function
does not modify any of the data members. A const member function can be used by
const objects of the class.

The client interface to a class object occurs in the public section of the class
definition.

Any member defined in any section — whether publie, prl:rtm:t-l!d, or private —
18 accessible to all of the other members of its class.

Members of a protected section are intended to be used by a class derived from
the class.

Data members are normally declared in a private. By restricting outside access to
the data members in a class, it is easier to ensure the integrity and consistency of
their values,

Members of private section of a class are intended to be used only by the members
of that class.

An & in the return type for a funetion or operator indicates that a reference return
is being performed. In a reference return, a reference to the actual ohject in the
return expression rather than a copy is returned. The scope of the returned object
ghould not be local to the invoked funetion or oparator.

When creating a friend function, use the kevword friend in the prototype in the
clags definition, but do not use this keyword in the actual function definition. Friend
functions are defined outside the class definition.

Friend functions have access to the private and protected members of a class.

An operator can be overloaded many times using distinct signatures.

If we want to overload a binary operator with two different types of operands with
non class as the first operand, we must use a friend funetion to define the operator
overloading. :

Do not use implicit type conversions unless it is necessary. If they are used
arbitrarily, it can cause problems for future users of the class.

580e

165,

166.
167.

168,
169,

170.

171.

172.

173.

174.

175.

176.

177,

178.

179.

180.

181.

182,

183,

184,

186.

Object-Oriented Programming writh C++

Whenever we use new in a constructor to allocate memory, we should use delete in
the corresponding destructor to free that memory.

The relationship “is_ a” indicates inheritance. For example, a car is a kind of vehicle.
The relationship “has_a" indicates containment. For example, a car has an engine.
Aggregate objects are constructed using containment.

Both inheritance and containment facilitate software reuse,

A new class that 18 created from an existing class using the principle of inheritance
i called a derived class or subclass. The parent class is called the base closs or
superclass.

When an ﬂhj&rrt that is a instance of derived class is instantiated, the constructor
for the base class is invoked before the body of the constructor for the derived class
is invoked.

A class intended to be a base class usually should use protected instead of private
members.

When a derived class obyect 1s being created, first its base classes constructors are
called before its own constructor. The destructors are called in the reverse order,
A conetructor of a derived class must pass the arguments required by itz base class
constructor.

A derived class uses the member functions of the base class unless the derived clasa
provides a replacement function with the same name.

A derived class object is converted to a base class object when used as an argument
to a base class member function.

Derived class constructors are responsible for initializing any data members added
to those inherited from the base class. The base class eonstructors are responsible
for initializing the inherited data members.

-When passing an object as an argument to the function, we usually use a reference

or a pointer argument to enable function calls within the function to use virtual
member function.

Declare the destruetor of a base class as a virtual function.

Destructors are called in reverse order from the constructor calls. Thus, the
destructor for a derived class is called before the destructor of the base or superclass.
With public inheritance, the public members of the base class are public members
of the derived class. The private members of the base class are not inherited and,
therefore, not accessible in the derived class.

With protected inheritance, public and protected members of the base class
become protected members of the derived class, The private members of the base
class are not inherited.

With multiple inheritance, a derived class inherits the attributes and behaviors of
all parent classes.

With private inheritance, public and protected members of the base class become
private members of the derived class. Private members are not inherited.

If a derived class has a base class as a multiple ancestor (through multiple
inheritance), then declare the base class as virtual in the derived class definition.
This would ensure the inheritance of just one object of the base class.

A pointer to a base class can be used to access a member of the derived class, as long
as that class member 18 inharited from the base,

Hidden page

Hidden page

235,

236.
237,

238.
239.

240,
241.
242,
243.
244,

245.

Appendix F ®583

The member function eof of ios determines if the end of the file indicator has been set.
End-of-file is set after an attempted read fails.

To use C++ strings, we must include the header file <string> of C++ standard
library.

C+4+ strings are not null terminated.

Using STL containers can save considerable time and effort, and result in higher
guality programs.

To use containers, we must include appropriate header files.

STL includes a large number of algorithms to perform certain standard operations
on containers.

STL algorithms use iterators to perform manipulation operations on containers.
We may use const-cast operator to remove the constantness of objects.

We may uze mutable specifier to the members of const member functions or const
objects to make them modifiable.

We must restrict the use of runtime type information functions only with
polymorphic types.

When we suspect any side-effects in the constructors, we must use explieit
constructors.

We must provide parentheses to all arguments in macro functions.

Appendix G

Glossary of Important C++ and
OOP Terms

#include

Abstract Class

Abstract Data

Type (ADT)
Abstraction

Access

Operaiions
Address

Alias

Anonymous
Union

ANSI C

ANSI C++

Array

ASCII

A C++ preprocessor directive that defines a substitute text for a name.

A preprocessor directive that causes the named file to be inserted in
place of the #include.

A class that serves only as a base class from which classes are derived.
No objects of an abstract base class are created. A base class that contains
pure virtual functions is an abstract base class.

An abstraction that describes a set of objects in terms of an encapsulated
or hidden data and operations on that data,

The act of representing the essential features of something without
including much detail.

COperations which access the state of a variable or object but do not
maodify it.

A value that identifies a storage location in memory.

Two or more variables that refer to the same data are said to be aliases
of one another.

An unnamed union in C++. The members can be used like ordinary
variables.

Any version of C that conforms to the specifications of the American
National Standards Institute Committee X3.J.

Any version of C++ that conforms to the specifications of the American
National Standards Institute. At the time of writing this, the standards
exist only in draft form and a lot of details are still to be worked out.
A collection of data elements arranged to be indexed in one or more
dimensions. In C++, arrays are stored in contiguous memory.
American Standard Code for Information Interchange. A code to
represent characters.

585

Assignment
Statement

Attribute

Automatic
Variable

Base Class

Bit
Bit Field

Bit Flip

Bitmapped
Graphics

Bitwise Operator

Block
Borland C++

Breakpoint
Byte

C

C++

Call by
Referenece

Call by Value

Cast
Class

Class
Hierarchy

Appendix G

An operation that stores a value in a variable.

A property of an object. It cannot exist independently of the object.
Attributes may take other objects as values.

See temporary variable.

A class from which other classes are derived. A derived class ecan inherit
members from a base class.

Binary digit; either of the digits 0 or 1.

A group of contiguous bits taken together as a unit. This C++ language
feature allows the aceess of individual bits.

The inversion of all bits in an operand. See also complement.

Computer graphics where each pixel in the graphic output device is
controlled by a single bit or a group of bits.

An operator that performs Boolean operations on two operands, treating
each bit in an operand as individual bits and performing the operation
bit by bit on corresponding bits.

A section of code enclosed in curly braces.

A version of the C++ language for personal computers developed by
Borland. This is the high-end version of Borland's Turbo-C++ product.
A location in a program where normal execution is suspended and
control is turned over to the debugger.

A group of eight bits.

A general-purpoze computer programming language developed in 1974
at Bell Laboratories by Dennis Ritchie. C is considered to be medium-
to high level language.

An object-oriented language developed by Bjarne Stroutstrup as a
successor of C.

A function call mechanism that passes arguments to a function by
passing the addresses of the arguments.

A function call mechanism that passes arguments to a function by
passing a copy of the value of the arguments.
To convert a variable from one type to another type by explicitly.

A group of objects that share common properties and relationships. In
C++, a class iz a new data type that contains member variables and
member 0 functions that operate on the variables. A Class is defined
with the kevword class.

Class hierarchy consists of a base class and derived classes. When a
derived class has a single base class, it is known as single inheritance.

Copyrighted material

586e

Class Network

Class Ohject
Classification
structure

Class-oriented

Client

Coding
Comment

Comment Block

Compiliation
Compiler
Complement
Composition
Structure

Conditional
Compilation

Constructor

Container Class
Control
Statement
Control
Variables

Object-Ortented Programming with C++

When a derived class has more than one base class (multiple inheritance),
it is known as class network,

A collection of clazses, some of which are derived from others. A class
network is a class hierarchy generalized to allow for multiple
inheritance. It is sometimes known as forest model of classes.

A variable whose type is a class. An instance of a clasa.

A tree or network structure based on the semantic primitives of inclusion
and membership which indicates that inheritance may implement
specialization or generalization. Objects may participate in more than
one such structure, giving rise to multiple inheritance.

Ohject-based svstems in which every instance belongs to a class, but
classes may not have super classes.

An object that uses the services of another ohject called server. That is,
clients can send messages to servers.

The act of writing a program in a computer language.

Text included in 4 computer program for the sole purpose of providing
information about the program. Comments are a programmer’s notes
to himself and future programmers. The text is ignored by the compiler.
A group of related comments that convey general information about a
program or a section of program.

The translation of source code into machine code.

A system program that does compilation.

An arithmetic or logical operation. A logical complement is the same as
an invert or NOT operation.

A tree structure based on the semantie primitive part of which indicates
that certain objectz may be assembled from the collection of other objects.
Objects may participate in more than one such structure.

The ability to selectively compile parts of a program based on the truth
of conditions tested in conditional directives that surround the code.

A special member function for automatically creating an instance of a
elags. This function has the same name as the class.

A classe that contains objects of other classes,
A statement that determines which statement is to be executed next
based on a conditional test.

A variable that is systematically changed during the execution of the
lpop. When the variable reaches a predetermined value, the loop is
terminated.

Copyrighted material

Copy
Constructuor

Curly Braces

Data Flow
Diagram (DFD)

Data Hiding

Data Member
Debugging
Decision
Statement
Declaration
Default
Argument

De-referencing
Operator
Derived Class

Destructor
Directive

Dynamic
Binding

Dynamie

Memory
Allocation

Early Binding
Encapsulation

Enumerated

Data Tvpe
Error State

Appendix G # 587

The constructor that creates a new class ohject from an existing object
of the same class.

One of the characters { or |. They are used in C++ to delimit groups of
elements to treat them as a unit.

A diagram that depicts the flow of data through a system and the
processes that manipulate the data.

A property whereby the internal data structure of an object iz hidden
from the rest of the program. The data can be accessed only by the
functions declared within the class (of that object).

A variable that is declared in a class declaration,

The process of finding and removing errors from a program.

A statement that tests a condition created by a program and changes
the flow of the program based on that deeision.

A specification of the type and name of a variable to be used in a program.

An argument value that is specified in a function declaration and is
used if the corresponding actual argument is omitted when the function
is called.

The operator that indicates access to the value pointed to by a pointer
variable or an addressing expression. See also indirection operator.

A eclasz that inherits some or all of its members from another class,
called base class.

A function that is called to deallocate memory of the objects of a class.

A command to the preprocezsor (as opposed to a statement to produce
machine code).

The addresses of the functions are determined at run time rather than
compile time. This is also known as late binding.

The means by which data objects can be created as they are needed
during the program execution. Such data objects remain in existence
until they are explicitly destroyved. In C++, dvnamic memory allocation
iz accomplished with the operators new (for creating data objects) and
delete (for destroying them).

See static binding,

The mechanism by which the data and functions (manipulating this
data) are bound together within an object definition.

A data type consisting of a named set of values. The C++ compiler
assigns an integer to each member of the set.

For a stream, flags that determine whether an error has occurred and,
if so, give some indication of its severity.

Hidden page

0589

Heterogeneous

List

Homogeneous

List

/O Manipulators

Implementation

Include File
Index

Indirect
Operator
Indirection
Operator

Information
Hiding
Inheritance

Inheritance
Path

Initialization
List

Inline Funetion

Insertion

Operator
Instance

Instance
Variable

Instantiation

Appendix G

A list of class objects, which can belong to more than one class.
Processing heterogeneous lists is an important application of
polymorphism.

A list of class objects all of which belong to the same class.

Funetions that when “output” or “input” cause no /O, but set various
conversion flags or parameters.

The source code that embodies the realization of the design.

A file that is merged with source code by invocation of the preprocessor
directive #include. Also called a header file.

A value, variable or expression that selects a particular element of an
array.

See de-referencing operator.

The operator *, which is used to access a value referred to by a pointer.

The principle which states that the state and implementation of an
object or module should be private to that object or module and only
accessible via its public interface. See encapsulation.

A relationship between classes such that the state and implementation
of an object or module should be private to that object or module and
only accessible via its public interface. See encapsulation.

A series of classes that provide a path along which inheritance can
take. For example, if class B is derived from A, class C is derived from
class B, and class D is derived from class C, then class D inherits from
class A via the inheritance path ABCD,

In the definition of a constructor, the function heading ean be followed
by a colon and a list of calls to other constructors. This initialization
list can contain calls to (1) constructors for base classes and (2)
constructors for class members that are themselves class ohjects.

A function definition such that each call to the function is, in effect,
replaced by the statements that define the function.

The operator <<, which is used to send output data to the screen.

An instance of a class is an object whose type is the class in question.

A data member that is not designated as static. Each instance of a class
contains a corresponding data object for each nonstatic data member of
the class. Because the data objects are associated with each instance of
the class, rather than with the class itself, we refer to them a=s instance
variables.

The creation of a data item representing a variable or a class (giving a
value to something).

Hidden page

Hidden page

Hidden page

Hidden page

Hidden page

This
Translation

Truncation
Turbo C++

Type Conversion
Typecast
Union

Value
Variable

Variable Name
Virtual Base

Visibility
Void

Windows

Appendix G # 595

This i8 a pointer to the current object. It is passed implicitly to an
overloaded operator function.

Creation of a new program in an alternate language logically equivalent
to an existing program in a source language.

An operation on a real number whereby any fractional part is discarded.
A version of the C++ language for personal computers developed by
Borland.

A conversion of a value from one type to another.
See cast.

A name given to a type via a type-name definition introduced by the
key-word typedef.

A data type that allows different data types to be assigned to the same
storage location.

A guantity assigned to a constant.

A name that refers to a value. The data represented by the variable
name can, at different times during the execution of a program, assume
different values.

The symbolic name given to a section of memory used to store a variable.
A base class that has been qualified as virtual in the inheritance
definition. In multiple inheritance, a derived class can inherit the
members of a base class via two or more inheritance paths. If the base
class is not virtual, the derived class will inherit more than one copy of
the members of the base class. For a virtual base class, however, only
one copy of its members will be inherited regardless of the number of
inheritance paths between the base class and the derived class.

A function qualified by the virtual keyword. When a virtual function
is called via a pointer, the class of the object pointed to determines
which function definition will be used. Virtual funetions implement
polymorphism, whereby objects belonging to different classes can
respond to the same message in different ways.

The ability of one object to be a server to others.

A data type in C++. When used as a parameter in a function ecall, it
indicates there is no return value. void+ indicates that a generie pointer
value is returned. When used in casts, it indicates that a given value is
to be discarded.

A graphical partition ni; screen for user interface.

Appendix H

| C++ Proficiency Test |

Part A

IT}HEIEI&EQHEM

State whether the following statements are true or false

l. A C++program isidentical to a C program with minor changes in coding

Bundling functions and data together is known as data hiding.

In C++, a function contained within a class is called a member function.

Object modeling depicts the real-world entities more closely than do functions.

In using object-oriented languages like C++, we can define our own data types.

When a C++ program is executed, the function that appears first in the program 1s

executed first.

In a 32-bit system, the data types float and long occupy the same number of bytes.

In an assignment statement such as int x = expression; the value of x iz always equal

to the value of the expression on the right.

9, In C++, declarations can appear almost anywhere in the body of a function.

10. C++ does not permit mixing of variables of different data types in an arithmetic
EXPTEasion.

11. The value of the expression 13%4 is 3.

12. Assuming the value of variable x as 10, the output of the statement cout << x--; will
be 10.

13. The expression for(:;) is the same as a while loop with a test ex presgion of true.,

14. In C++, arithmetic operators have a lower precedence than relational operators.

15. In C++, only int type variables can be used as loop control variables in a for loop.

16. A do loop iz executed at least once.

=20 =L e

&

Sok5

21

SHEER

36,

~EB8ES

42,

SHEE

47.

49,

Appendix H @597

The && and | | operators compare two boolean values,

The control variable of a for loop can be decremented inside the for statement.

The break statement is used to exit from all the nested loops.

The default case is required in the switch selection structure,

The continue statement inside a for loop transfers the control to the top of the loop.
The goto statement cannot be used to transfer the control out of a nested loop.

A conditional expression such as (x < y¥) 7 x : ycan be used anywhere a value can be.
A structure and a class use similar syntax.

Memory space for a structure member is created when the structure is declared.

If item1 and item2 are variahles of type structure Item, then the assignment operation
iteml = item?Z; iz legal.

When calling a function, if the arguments are passed by reference, the function works
with the actual variables in the calling program.

A structure variable cannot be passed as an argument to a function,

A C++ function can return multiple values to the calling function.

A funetion call of a function that returns a value can be used in an expression like any
other variable.

We need not specify any return type for a function that does not return anything.

A set of functions with the same return type are called overloaded functions.

Only when an argument has been initialized to zero value, it is called the default

argument.
A variable declared above all the functions in a program can be accessed only by the
main() funetion.

A static automatic variable retains its value even after exiting the function where it is
defined.

We can use a function call on the left side of the equal sign when the funetion returns
a value by reference.

Returning a reference to an automatic variable in a ealled function is a logic error.
Reference variables should be initialized when they are declared.

Using inline functions may reduce execution time, but may increase program size.
A C++ array can store values of different data types.

Referring to an element outside the array bounds is a syntax error.

When an array name is passed to a function, the function access a copy of the array
passed by the program.

The extraction operator == stops reading a string when a space 16 encountered.
Objects of the string class can be copied with the assignment operator.

Strings created as objects of the string class are zero-terminated.

Pointers of different types may not be assigned to one another without a cast operation.
Not initializing a pointer when it is declared is a syntax error.

Data members in a class must be declared privat.a.

Data members of a class cannot be initialized in the class definition.

Copyrighted material

598e Object-Oriented Programming with C++

50. Members declared as private in a class are accessible to all the member functions of
that class. '

In a class, we cannot have more than one constructor with the same name.

A member function declared const cannot modify any of its class's member data.

In a class, members are private by default.

In a structure, members are public by default.

A member variable defined as statie is visible to all classes in the program.

An object declared as const can be used only with the member functions that are also

declared as const.

57. A member function can be declared statie, if it does not access any non-statie class
members,

58. A non member function may have access to the private data of a class if it is declared
as a friend of that class.

59. The precedence of an operator can be changed by overloading it.

60. Using the keyword operator, we can create new operators in C++,

61. We ecan convert a user-defined class to a bagic type by using a one-argument constructor.

We can always treat a base-class object as a derived-clasa object.

A derived class cannot directly access the private members of its base class.

In inheritance, the base-class constructors are called in the order in which inheritance

is specified in the derived class definition.

Inheritance is used to improve data hiding and encapsulation.

We can convert a base-class pointer Lo a derived class pointer using a cast.

When deriving a class from a base class with protected inheritance, public members

of the base clazs became protected members of the derived class.

68. When deriving a class from a base class with public inheritance, protected members
of the base class become public members of the derived class.

69. A protected member of a base class cannot be accessed from a member function of the
derved class,

70. In case constructors are not specified in a derived class, the derived class will use the
constructors of the base class for constructing its objects.

71. The scope-resolution operator tells us what base class a class is derived from.

72. A derived class is often called a subclass because it represents a subset of its base class,

73. It is permitted to make an object of one class a member of another class.

74. Virtual functions permit us to use the same function call to execute member functions
of different classes.

75, A pointer to a base clasa can point to an object of a derived class of that base class.

T6. An abstract class is never used as a base class.

A pure virtual function in a class will make the class abstract.

A derived class can never be made an abstract class.

A statie function can be invoked using its class name and function name.

The input and output stream features are provided as a part of C++ language.

A file pointer always contains the address of the file.

SHEBERE

ZER

SE&

2EE2FEA

Copyrighted material

Appendix H #5989

Templates create different versions of a function at runtime.

Template classes can work with different data types.

A template function ean be overloaded by another template function with the same

function name.

A function template can have more than one template argument.

Class templates can have only class-type as parameters.

A program cannot continue to execute after an exception has occurred.

An exception is always caused by a syntax error.

After an exception i8 processed, control will return to the first statement after the

throw.

An exception should be thrown only within a try block.

If no exceptions are thrown in a try block, the eatch blocks for that try block are

skipped and the control goes to the first statement after the last cateh block.

The statement throw; rethrows an exception.

Two catch handlers cannot have the same type.

Exceptions are thrown from a throw statement to a catch block.

STL algorithms can work successfully with C-like arrays.

Algorithms can be added easily to the STL., without modifving the container classes.

A map can store more than one element with the same key value.

A vector can store different types of objects.

In an associative container, the keys are stored in sorted order.

In a deque, data can be quickly inserted or deleted at either end.

. Two functions cannot have the same name in ANSI C++.

. The modulus operator(%) can be used only with integer operands,

Declarations can appear anywhere in the body of a C++ function.

All the bitwise operators have the same level of precedence in Java.

105. Ifa=10and b = 15, then the statement x = (a™> b) 7 a : b; assigns the value 15 to x.

106. In evaluating a logical expression of type boolean expression — 1 && boolean
expression — £ both the boolean expressions are not always evaluated.

107. Inevaluating the expression (x =y && a < b) the boolean expression ¥ ==y is evaluated
first and then a < b is evaluated.

108, The default case 1s required in the switch selection structure,

109, The break statement is required in the default case of a switch selection structure.

110. The expression (x ==y && a < b) ie true if either x == ¥ is true or a < b is true.

111. A variable declared inside the for loop control cannot be referenced outside the loop.

112. Objects are passed to a function by use of call-by-reference only.

113. Wecan overload functions with differences only in their return type.

114. Itis an errorto have a function with the same signature in both the super elass and its
aubeclass.

115. Derived classes of an abstract class that do not provide an implementation of a pure
virtual function are also abstract.

116, Members of a class specified as private are accessible only to the functions of the class.

=8 BEIERE XEBR

EESRGESE

i e i
EBERES

Copyrighted material

Hidden page

Hidden page

602% Object-Oriented Programming with C++

A6, is a way to add features to existing classes without rewriting them.
47. When the class B is inherited from the class A, class A is called the
class and class B is called the class.

48, The process of inheriting features from many basic classes 18 known as

49, The members declared as or in the
base class may be accessed from a member function of the derived class.

50. In protected derivation, public members of the base class become
members of the derived class,

51. Inamultipath inheritance, the duplication of inherited members from the grandpar-
ent class can be avoided by declaring the grandparent class as
while declaring the intermediate base classes.

52. A class that is designed only to act as a base class but not used to create objects 15
known as class,

53. Inheritance represents relationship between classes and com-
position represents relationship between classes,

54. The operator i8 used to specify a particular class.

65, A function eall resolved at run time is referred to as hinding.

56. When we use the same function name in both the base and derived classes dynamic

binding iz achieved by declaring the base class function as
57. A function causes its class to be abstract.
A virtual function can be made pure virtual function by placing
at the end of its prototype in the class definition.
The only integer that can be assigned to a pointer is —
A pointer is a variable for storing .
The content of an int type pointer increases by bytes whenever
the increment operator is applied to it.
A pointer to can hold pointers to any data type.
While passing arguments to a function, passing them by pointers allow the function to
the arpuments in the calling function.
The base class for most of the input and output stream classes is the
class.
Output operations are supported by the class.
The class declares input functions such as get() and read().
When using manipulator functions to alter the output format parameters of streams,
we must include the header file .
The default precision for printing floating point numbers is
digits.
The flag causes the display of trailing zeros.
To write data that contains variables of type to an object of type of stream, we should
use function.
71. The function writes a single character to the associated stream.

=

Z28

S8 F BN

Z

S8

4.
0.

76.
7.

78.

g2

S8 BIREREE B

[y

SEBEIR & IEREEZ

Appendix H # 603

To place the input pointer in a specified location in the file, we must use the

function.
Opening a file in ios::out mode also opens it in the mode by
default.
The read() and write) functions handle data in form.
We must open the file using option for performing both input
and output operations.
Command-line arguments are accessed through arguments to
A provides a convenient way to create a family of classes and
functions.
A function template definition begin with the keyvword

A call instantiated from a class template is called a

All functions instantiated from a function template have the same name; themfﬂre.

the compiler applies the concept of resolution to invoke the

required function.

A template argument is preceded by the keyword

A template function works with data types.

An exception is typically caused by SrTor.

Exception are thrown from a statement to a
block.

The code that is likely to produce an exception is enclosed ina

hlock.

The catch handler will eatch all types of exceptions.

By default, if no handler is found for an exception, the program

The container deque is a type container.

The three STL container adapters are stack, queue, and

The STL algorithms operate on container elements indirectly using ;

A is an appropriate container if we are given an element’s key

value and we want to quickly access the corresponding value,

Ina container, the data can be quickly inserted or deleted at

either end.

In containers, keye are stored in sorted order.

For using function objects, we must include the header file

For using the algorithm aceumulate(), we must include the header file .

The operator i uged to change the constantneas of objects.

The operator returns a reference to a type-info object.
Non standard casts between unrelated types may be achieved by using the operator

The operator gualifies a member with its namespace.
The use of specifier toa data item permits us to modify it even
when it is 8 member of a const object.

Hidden page

Hidden page

Hidden page

Hidden page

Hidden page

Hidden page

Hidden page

Appendix H 2611

E. Tohide the details of base classes
42, Consider the following class definition.

class Person

{

H

class Student : protected Person

i
H

What happens when we try to compile this class?
A. Will not compile because class body of person is not defined
B. Will not compile because the class body of Student is not defined
C. Will not compile because class Person is not public inherited
D. Will compile successfully.
43. Consider the following class definitions:

class Maths

{
Student studentl;
| H
class Student
{
S5tring name;
|H

This code represents:
A. an'is a° relationship
B. a 'has a' relationship
C. both
D. neither
44, Which of the following are overloading the function

int sum(int x, int ¥y} { }

int sum(int x, int v, int z) { }
float sum(int x, int ¥) { }

int sum(float x, float y) | }

int sumf(int a, int b} { }

float sum(int %, int v, float z) | }
45, What i8 the error in the following code”

mUO®p

class Test

i
)

virtual void display():

612e®

47.

48,

49,

Ohbject-Oriented Programming with C++

Noerror
Function display() should be declared as static
Function display() should be defined
Test class ghould contain data members
Whmh of the following declarations are illegal?
void *ptr;
char *strl = "xyz™
char str2 = "abe";
const *int pl;
int * const p2;
Th& function show() iz a member of the class A and abj i2 a object of A and ptrisa
pointer to A. 'Which of the following are valid access statementa”
abj.show();
abj—sshow();
ptr—sshow();
ptr.show():
pir*show();
(*ptr).ghow();
We can make a class abstract by
A. Declaring it abstract using the static keyvword
B. Declaring it abstract using the virtual keyword
C. Making at least one member function as virtual funetion
. Making at least one member function as pure virtual function
E. Making all member functions const.
Consider the following code:

ivowp

mEOWE

e

TED0®

class A
{ public : virtual void show() = 0; };

class B : public A
{ public : void display()
{ cout =< "B"; } };

class C : public A
{ public : void show()
{ cout =< *C"; } };

Which of the following statements are illegal?

A Ccl;

B. Aal;

C. Bhbl; .
D. A*arr[2];
E. arr[0] = &cl;

Hidden page

6140 Object-Oriented Programming with C++

57. Which of the following keywords are used to control access to a class member?
A, default

B. break
C. protected
D. goto
E. public
58. Which of the following keywords were added by ANSI C++7
asm
explicit
EMum
extern
typename
. using
59. Which of the following statements are valid array declaration?
A int number(5);
B. float average[5];
C. double[5] marks;
D, ecounterint[5];
E. int x[5], y[10];
60. What will be the content of array variable table after executing the following code

SIzE=R=0-=

for(int i=0; i<3; i++)
for{int j=0, j<3; Jj++)
if(j == 1) table[i][j] = 1;
else table[i][j] = O;

A 00O B. 100 C.001 D100
000 110 010 010
000 111 100 001

61. Which of the following methods belong the string class?

A, lengthi)

B. compareTol)

C. equals()

D. substring()

E. All of them

F. None of them
62, (mven the cods

string sl = "yes";
string s2 = "yes";
string 53 = string s3(sl);

Which of the following would equate to true?
A 8l == 52

Copyrighted material

Appendix H 2615

B. sl=s2

C. 83 ==&l
D. sl.equals{s2)
E. s3.equals(sl)

Suppose that 51 and s2 are two strings. Which of the statements or expressions are
correct?

A, string 53 = sl + s82;

B. string 53 = sl —s2;

C. 81 == 82

D. sl.compareTo(s2);

E. int m = sl.length();
Given the code

string s("abc"):

Which of the following calls are valid?
A, strim()
B. sreplace(a’,"A’)
C. s.substring(3)
D. s.toUpperCase()

. Given the declarations

bool b;
int x1 = 100, xZ2 = 200, x3 = 300;

Which of the following statements are evaluated to frue?
A b=x1%*2 == x2;
B. b xl+ x2 '= 3*x1:
C. b=(x3-2%*x2<0) || ((x3 = 400) < 2*x2);
D. b= (x3-2%x2>0) || ({x3 = 400) < 2*x2);
In which of the following code fragments, the variable x is evaluated to 8.
A intx=32;
X=x>2
B. intx=233;
X =x20>3
C. int x=35;
X =x>>2;
D. int x=16;
X =x>>]1;
Whach of the following represent legal flow control statements?
A break;
B. break();

C. continue outer;

Hidden page

75,

76,

Appendix H @617

Which of the following containers support the random access iterator?
priorty-gquens
multimap
list
visrtor
multiset
Wlm:huf the following are non-mutating algorithms?
A search()
B. accumulate()
C
D
E.

mEowp

. for_each()
. rotate()

count()
Which ufthe following functions give the current size of a string object?

E. length()
Consider the following code:

class Base

{
private : int x;
protected : int y;

H

class Derived : Public Base

{
int a, bj

void change()
{

a = x;
b = y;

)
b
int main()

{
Base base;

Derived derived;
base.y = 03
derived.y = 0;
derived.change();

}
Which of the lines in the above program will produce compilation errors?

Hidden page

10.

11.

12,

13.
14.
15.
16.

17.

18.

Appendix H 2619
What is the advantage of using named constants instead of literal constants in a pro-

gram?
What is the difference between the following two declarations?

extern int m;
int m = 0:

How do the following two compare?

(a) #define max(x,y) (((x)=(y) 7 (x} : (¥))
(b) inline int max(int x, int y)
{ return (x>y) 7 x : y; }

When the following code is executed, what will be the values of x and y?

int x=1, y=0;
y = utt

What are the values of m and n after the following two statements are executed?

int m=hi
int n=mt+ * +Hmg

Use type casts to the following statements to make the conversion explicit and clear,

float x = 10 + intNumber;
int m = 10.0 * intNumber/floatNumber:

What are Ivalues and rvalues?

What are new and delete?

What is the difference between using new and malloe() to allocate memory?

In the following statements, state whether the functions funl and fun2 are value-
returning functions or void functions.

fa) x = 10 * funl(m,n) + 5;
(b) funZ(m,n);

What is the difference between using the following statements?

(a) cin > ch;
(b) cin.getich);

Write a single input statement that reads the following three lines of input from the
SCreen.

Hidden page

27.

3l

5EE

Appendix H *621

Given the statements

int y[5];:
int *p = y;

is the following statement legal?
p[3] = 103
How does a C-string differs from a C++ type string?
Does an array of characters represent a character string?
What is the difference between the following two statements?

const int W = 100;
#define M 100

Given the statement
caonst int size = §;
can we declare an array as follows?
int x[size];
A character array name is defined as follows:
char name[30] = “"Anil Kumar®;
what will be the values of m and n in the following statements?

int m = sizeof(name);
int n = strien{name);

Write a function change() to exchange to double values.
Write a function to sort a list of double values using the function change().
What will be the value of test after the following code is executed?

int m= 10, n = =1, test = 1;
if{melh)
if(n=1)
test = 2Z;
else
test = 3;

Hidden page

Appendix H 2623

42, Rewrite the following sequence of if ... then statements using a single if ... then ...
else sequence.

if(m&2 == 0)
cout << "m is even number ‘n";
if(ms2 1= 0)
{
cout << "m is odd number \n";
cout =< "m = " << m << "\n":

l
43. Bimplify the following code segment, if possible,

if(value = 100}

cout << "Tax = 10";
if(value = 25)

cout << *Tax = 0%
if(value »>= 25 B& value <= 100)

cout =< "Tax = 5%;

44, What does the following loop print out?

int m = 1:
while{m < 11)
{

3

COUt =< mrk+;

!

45. Write a code segment, uging nested loops, to display the following output:

i 4 5
a4
3

b b b
P P S P

46, A program uses a function named convert() in addition to its main funection. The
function main declares a variable x within its body and the function convert() de-
clares two variables ¥ and z within its body, z is made static. A fourth variable m is
declared ahead of both the functions. State the vigibility and lifetime of each of these
variables,

47. What is the output of the following program?

finclude <jostream=

624 % Object-Oriented Programming with C++

using namespace std;
void stat()

{
int m= 0;
static int n = 0;
mi+;
n++s
cout == m << " " <<p o< "\n";
)
int main()
{
stat();
stat();
return 0;
}
48. Replace if ... else ladder by a switch statement in the following code segment.
if(x == §)
at+ig
else if(x == B)
h++;
else if(x == 9)
CHéy

489. What is the output of the following code segment?

int m = 0
inti=1;
do
{
cout =< i3
i+
i

while(i == n)

50. What is the output of the following code segment?
int n = 0;
for(int i=1l;i<=n;i++).

cout =< 1;

51. Why is it inappropriate to use a float type variable as a loop control variable?

FHRED

BEIRGEBRIBE B3

Appendix H 2625

. What is the sutput of the following statement?

cout=< "He ‘n said ‘n \" Hello \ " \n";

What is the primary purpose of C++ union types?

What are the two bagic differences between a struecture and an array?

Distinguish between a struct and a class in C++.

MName the three language features that characterize object-oriented pmgrﬂmmmglan
Euages.

What is the difference between static and dynamic binding of an operation to an object?
How would you write a generic version of max function that would return the largest
of the two given values of any data type?

Compare the relationship between classes in composition and inheritance,
Distinguish between virtual functions and pure virtual functions.

Distinguish between static typing and dynamic typing.

What is the application of reinterpret_cast operator”

What is an abstract base class?

What is a pure virtual member function?

What is the application of publie, protected, and private keywords?

Why do we declare some data members of a class as private?

Where and why do we need to use virtual functions?

What is dynamic binding? When do we use it?

What is a down cast? When do we use it?

Why do we need to use constructors?

What 18 a copy constructor? What is its purposa?

What is a default constructor?

What is ‘this"

How are the overloaded operator functions useful in object-oriented design?

What 18 'has a' relationship? How is this implementsd?

What is 'is a' relationship? How is this implemented?

Will the following code work correctly?

void fun(int m)

{
/[code here

void fun{unsigned char m)
{
[/ code here

int main()

{
fun{"X'):
return 0;

Hidden page

Appendix H

100. What is the use of the following code?

class student

{
static int m = 0;
student()
{
M+
}
}:

101. Which of the following expressions are wrong?

(a) 11% 2

by -11 %2
© 11% -2
dy -11 % -2
(e) 11.0 % 2.0

102. What will be the output of the following program segment.
{

intm=1;
{
intn=2;
cout == m << ® " =< p =< endl;

cout << m =<

<< n << endl;

}
103. What will be output of the following program?

#include <iostream=
using namespace std;

bool test = false;

int main{)

{
bool test = true;
cout =< "test = " <= test =< "\n";
cout =< "test = " =< ;; test =< "\n";
return 0;

627

Hidden page

Hidden page

Hidden page

Appendix H # 631
118. What is wrong with the following code?

class A

{

H
class B : public A
{
public:
void set(A a, int y)
{

)

protected: int x;

a.x = yi
b

119, What is the difference between a set and a map.
120. What is the difference between the C header <string.h> and C++ header <string>"

| l Bibliography |

Balagurusamy, E, Programming in ANSI C, Tata McGraw-Hill, 1992,
Barkakati, Nabajyoti, Object-Oriented Programming in C++, SAMS, 1991,
Cohoon and Davidson, C++ Program Design, McGraw-Hill, 1999

Cox, B J and Andrew J Novobilski, Object-Oriented Programming —An Evolutionary Approach,
Addison-Wesley, 1991,

Dehurst, Stephen C and Kathy T. Stark, Programming in C++, Prentice-Hall, 1989

Deitel and Deitel, C++ How to Program, Prentice Hall, 1998,

Eckel, Bruee, Using C++, Osborne MeGraw-Hill, 1989

Gorlen K, Data Abstraction and Object-Oriented Programming in C++, Wiley, 1990.

Ladd S. Robert, C++ Technigues and Applications, M&T Books, 1990

Lafore, Robert, Object-Oriented Programming in Turbo C++, Waite Group, 1999,
Lippman, Stanley B and Josee Lajoie, C++ Primer, Addison-Wesley, 1998,

Schildt, Herbert, Using Turbo C++, Osborne MeGraw-Hill, 1990.

Stroustroup, Bjarne, The C++ Programming Language, 3rd edition, Addison-Wesley, 1997,

Stroustroup, Bjarne and Margaret A Ellis, The Annotated C++ Reference Manual, Addison-
Wesley, 1990,

Voas, Groy, Object-Oriented Programming — An Introduction, Osborne McGraw-Hill, 1991,
Wiener, Richard 8 and Lewis J Pinson, The C++ Workbook, Addison-Wesley, 1990,

Abstract base class 281 Cascading 27

Abstract class 206 Casting operator 150
Abstract data types 9,899 Catchblock 381

Accessing class members 101 Catching mechanism 386
Algorithms 402 Chained assignment 60
Anonymous enum 41 char 45

ANSI prototype 102 cin 26

ANSI standards 20, 446 class 40, 99

ANSIC 20,38 Class dependency 484
ANSIC++ 20,36, 446 Class hierarchies 485
Argument counter 351 Class templates 360
Argument vector 351 Class variables 121
Arguments 19 Classes B8, 40, 96

Arrays 42, 109, 124, 166 Classification relationship 477
Arrays of objects 124 Client server 30

Associative containers 405 Client server relationship 479
Asynchronous exceptions 381 Command-line arguments 350
ATE&T C++ 30 Comments 21

Attnhut%s 9] Comparing strings 428
Automatic conversion 61 Compile time polymorphism 251
Automatic initialization 144 Compiling 30

Composition relationship 478

bad(=348 Compound assignment &1

Basic data types 38

Binary Operators 176, 179 Compound assignment

Bit fields 308 operatar @1

Bitwise expressions 60 const 41, 83, 132

bool 38, 60 const arg:umenta 83

Boolean expressions 59 const objects 162

Borland C++ 31 const_cast operator 450

Bottom-up programming 4 Constant expressions 58

Built-in data types 38 Constants 37
Constructors 144, 232, 326

Call by reference 49, 81 Container adaptors 405

calloe() 52 Containers 403

634®

Containership 240
Containment relationship 484
Context diagrams 473
Control structures 64
Conversion function 180
Conversions 61, 172, 1892
Copy constructor 149, 156
Copy initialization 156
cout X2

C-strings 428

#define 44

Data abstraction 8

Data dictionary 473

Data flow diagram 473, 483
Data hiding 8

Data members 8, 89
Decision table 473

Decision tree 473
Declaration statement T9
Declarations 45

Default arguments 84, 153
Default constructor 146
delete 49 52

Dereferencing operator &2
Derived classes 201, 273
Derived containers 405
Derived data types 42
Destination class 191
Destructors 144, 162

Dot operator 97

double 38

do-while statement 68
Driver program 489
Dummy variables 79
Dynamic binding 10, 12, 253
Dyvnamic constructors 158
Dynamic initialization 46, 153
dynamic_cast operator 450

Early hinding 251
Embedded assignment 60
Encapsulation 8,89
endl 49,55

End-of-file 334

Index

Entry-controlled loop &8
enum 37

Enumerated data type 40
eof() 304

Error handling 348
Exception handling 380
Exception specification 392
Exceptions 380
Exit-controlled loop 68
explicit 451

Explicit call 147
Expressions &8

extern 45

Extraction operator 286

fail() 454

File mode 334

File pointers 335

Files 323

fill) 303,307

Float expressions 59
Flowchart &

for statement 68

Forest model 486
Fountain model 475
free() 52

Free store operators 53
Friendly function B89, 124, 179
fstream 3325

Function objects 420,
Function overloading 10, 88
Funection polymorphism 87
Function prototyping 79
Function templates 366
Functions 6, 42, 77
Fundamental data types 38

Generic programming 307
get() 293,338

Get from operator 26
Get pointers 336
getline() 297

Global data §

good() 349

Grid charts 472

header file 23

hierarchical char 478
hierarchical classification &
hierarchical inheritance 202, 224

Identifiers 37
if statement 65
Implicit argument
Implicit call 147
Implicit constructor 152
Implicit conversions &1
Indirection 81

Information hiding &
Inheritance 8§, 12, 201250
Inheritance relationship 477, 484
Initialization 46

Initialization list 238

Inline 82

Inline constructor 149

Inline functions 8284, 145
Input operator 26

Input stream 291, 324
Instantiation 362

int 25

Integral expressions 59
Integral widening 62

iostream 20, 292, 325

IS0 standard 20

Iterators 402, 408

270

Keywords 36

Late binding 252
Layout forms 472
Linking 28
Lists 413
Local classes
Local data 5
Logic errors 380
Logical expressions 60
long 38

Loop structure 63

134

main() 22
malloe{) 52

Index

635

Manipulators 54,312

Mapped values 4056

Maps 417

Math functions 90

math.h 290

Member function templates 373

Member functions 8, 101, 117, 132, 487

Memory management

oprators 52
Message passing 10
Methods 8
Modifiers 38
Modular programming 4
multi-level inheritance 202, 214
multipath inheritance 229
Multiple inheritance 202, 218
mutable 452

Named constants 44

Namespace 25, 463

namespace 25, 453

Nesting 76, 241

Nesting of classes 240

Nesting of member functions 107
Nesting of Namespaces 454

new 48, 5d

Object-based programming 12
Object-oriented analysis 474, 479
Object-oriented design 474, 483
Object-oriented languages 12
Object-oriented notations 475
Object-oriented paradigm 6, 473

Object-oriented programming 4, 6, 12, 474

Object-oriented system 468
Objects 6, 7, 28, 96, 101
openi) 330

Operator function 172

Operator keywords 60, 459

Operator overloading 9, 23, 49, 63,

186
Operator precedence 63
Operators 489
Output operator 22
Output stream 291, 324

172

—-—=1

6l6® Index

Owverloaded constructors 151 selection structure 64
Sequence containers 404
Parameterized classes 359 sequence structure 64
Parameterized constructors 146 Sequential access 338
Parameterized functions 359 set precision() 302
Pass-by-reference 122 setf() 301,307
Pass-by-value 122 setfill) 302
Period operator 97 setiosflags() 302
Play scripts 472 setw 49, 5d
Pointer expressions 589 setw() 50, 302
Pointers 43, 132, 251 short 2338
Pointers to derived classes 273 Shorthand assignment operator 61
Pointers to members 132 Signed 38
Pointers to object 253 Single inheritance 202, 204
Polymorphism 9, 251 Software crisis 1
precision() 301,304 Software evolution 3
private 99 Source class 191
Private derivation 203 Standard template library 401
Procedure-oriented 4 static 45, 251
programming Program flowchart 472 Static binding 251
protected 211 Statie class member 115
Prototype paradigm 490 Static data members 115
Prototyping 79, 103, 400 Static linking 251
public 99 Static member functions 117
Public derivation 203 static_cast operator 449
Pure virtual functions 281 Stream 291, 292, 326
put() 293, 338 Stream classes 29], 292
Put pointer 336 string class 428
put to operator 23 string ohjects 428
struct 40
BRandom access 343 Structure chart 473
read() 339 Structure elements 97
References 47 Structure tag 97
Reference variable 47, 81 Structured programming 64
reinterpret_cast operator 385 Structured 40, 96
Relational expressions 59 swaping strings 438
resetioeflags() 302 awitch 41
Return by reference 82 switch statement 67
Return statement 25 Symbolic constants 44
Reusability 8,201 Synchronous exceptions 381
Run time polymorphism 252 Syntactic errors 380

System flow chart 472
Scope resolution operator 49
seckg() 336 tellg() 336
seekp() 336 tellp 337

Template 81, 96, 359
Template arguments 374
Template class 362
Template function 368
Textual analysis 482

this pointer 270

Throw point - 383
Throwing mechanism 386
Tokens 35

Top-down programming 4
Tree model 488

Try block 381

Turbo C++ 31

Type cast operator &7
Type compatibility 45
Type conversions 171, 187
typedef 58

typeid operator 451

Unary operators 173
union 40

e 637

UNIX 29

unsetf() 301
Unsigned 38

Use relationship 484
using 25

Variables 27,45

Vectors 400

Virtual base class 228

Virtual function B9, 251, 262, 275
Visibility mode 203

Visibility modifier 210

Visual C++ 38

void 30

Warnierforr diagrams 473
Waterfall mode 47, 470
wechar t 39, 440

while statement 68
width() 301,302
write() 287, 339

Hidden page

Hidden page

The McGraw-Hill Companies

OBJECT ORIENTED PROGRAMMING
WITH c.|_|.
FOURTH EDITION

The fourth edition of Object Oriented Programming with C++, explores the language
| in the light of its Object Criented nature and simplifies it for novice programmers.

The simple and lucid presentation of the concepts, the hallmark of this book, has been
further enhanced in this edibion.

Salient features:
‘ Detailed cover 1E o f Object Oriented Svstems Devels e

'. Programming Projects — Two new projects on ‘Menu Based Calculation System’ and

'f1.r|?A.'f|5_' Systern for imprernentation
‘ Hr:.'J‘ o] siep _'-.f.n..'n.".':'ll. s 1O IMPpiermeniaiian of progecis
‘ Model C++ Prafciency Test included to stre gL the concapts legrnt 1n the boak.
' Excellent ped: gy includes

3 N II'| FTIINE fXPTCISER
T L "‘l:ll-ﬂ.-..'.."l-:'-. TTTRITIE & varnpe

.DEdfca!Ed Website: FEEp: / www. e com/ Dalagurssamy/ oobde

S L 0 e | S RO e
I"1-I-I"'~I 3 WTR-ORA T 740

i MK
=) Tuta McGraw-Hill

1T A e & DTN

