| Working with Files |

Y Y Y Y Y Y YYYYYYY

Key Concepts

Congole-user interaction
Input stream

Oatput stream

File stream classes
Opening a file with open()
Opening a file with constructors
End-of-file detection

File modes

File pointers

Sequential file operations
Random access files
Error handling

! .
Command-line arpuments

11.1 Introduction

Many real-life problems handle large
volumes of data and, in such situations, we
need to use some devices such as floppy disk
or hard disk to store the data. The data is
stored in these devices using the concept
of files. A file is a collection of related data
stored in a particular area on the disk.
Programs can be designed to perform the
read and write operations on these files.

A program typically involves either or
both of the following kinds of data
communication:

1. Data transfer between the console
unit and the program.

2. Data transfer between the program
and a disk file.

324e Ohject-Oriented Programming wwith C++

This is illustrated in Fig. 11.1.

External memoy
Deata files ___T__
data read data Program-file ineraction
(to files) (from files)
Irfarmal memany
Program + Data - o e -

cin == Consaole unit b Screen) I

{get data
£
B~

Keyboard

- Fige 11.1 e Consol-program-file interaction |

We have already discussed the technique of handling data communication between the
console unit and the program. In this chapter, we will discuss various methods available for

The /0 system of C++ handles file operations which are very much similar to the console
input and output operations. It uses file streams as an interface between the programs and
the files, The stream that supplies data to the program is known as input stream and the
one that receives data from the program is known as output stream. In other words, the
input stream extracts (or reads) data from the file and the output stream inserts (or
writes) data to the file. This iz illustrated in Fig. 11.2.

Input stream
read data .
Irpast
Disk files Program-
L
Output stream dana
write data outpul

Hs. 11.2 &= Filr :r'upul.m'ld cutpel streams

Copyrighted maierial

Working with Files # 325

The input operation involves the ereation of an input stream and linking it with the
program and the input file. Similarly, the output operation involves establishing an output
stream with the necessary links with the program and the output file.

Il].E Classes for File Stream Operations

The /O aystem of C++ contains a set of classes that define the file handling methods. These
include ifstream, ofstream and fstream. Thesze classes are derived from fstreambase
and from the corresponding iostream clazs az shown in Fig. 11.3. These classes, designed to

manage the disk files, are declared in fsiream and therefore we must include this file in any
program that uses files.

[

I
iosirearm ! }

Fig. 113 & Shream classes for file operations (conbeined in fsireams file) I

= e e rma T

Table 11.1 shows the details of file stream classes. Note that these classes contain many
more features. For more details, refer to the manual.

|11.3 Opening and Closing a File

If we want to use a disk file, we need to decide the following things about the file and its
intended use:

1. Suitable name for the file.
2. Data type and structure,

326 Object-Oriented Programming with C++

3. Purpose,
4. Opening method.

Table 11.1 Details of file stream classes

Class Confents
filebuf Itz purpose is to set the file buffers to read and write. Contains Openprot con-
stant used in the open) of file stream classes. Also contain close() and open) as
members,

fstreambase Provides operationg common to the file streams, Serves as a base for fstream,
ifstream and ofstream class. Contains open() and close() functions,

ifstream Provides input operations. Contains openi) with default input mode. Inherits the
functions get(), getline(), read(}, seekgi) and tellg(} functions from istream.

Ofstream Provides output operations. Contains open() with default output mode. Inherits
puti), seekpl), tellpi); and writel), functions from ostream,

fstream Provides support for simultaneous input and output operations. Contains open()
with default input mode. Inherits all the functions from istream and ostream

classes through iostream,

The filename is a string of characters that make up a valid filename for the operating
system. It may contain two parts, a primary name and an optional period with extension.
Examples:

Input.data
Test.doc
INVENT .ORY
student
salary
QUTPUT

As stated earlier, for opening a file, we must first create a file stream and then link it to
the filename. A file stream can be defined using the claszes ifstream, ofstream, and fstream
that are contained in the header file fstream. The class to be used depends upon the purpose,
that is, whether we want to read data from the file or write data to it. A file can be opened
in two ways:

1. Using the constructor function of the class,
2. Using the member function open() of the class.

The first method is useful when we uze only one file in the stream. The second method is
used when we want to manage multiple files using one stream.

Opening Files Using Constructor

We know that a constructor is used to initialize an object while it is being created. Here, a
filename is used to initialize the file stream object. This involves the following steps:

Copyrighted material

Working with Files €327

1. Create a file stream object to manage the stream using the appropriate class. That
is to say, the class ofstream is used to create the output stream and the class
ifstream to create the input stream.,

2. Initialize the file object with the desired filename.

For example, the following statement opens a file named “results” for output:
ofstream outfile("results"); // output only
This creates outfile as an ofstream object that manages the output stream. This ohject

can be any valid C++ name such as o_file, myfile or fout. This statement also opens the
file results and attaches it to the output stream outfile. This is illustrated in Fig. 11.4.

Disk
Output stream
— — results
File
cutfile
i
Input stream
data
e
irtfile

Fig. 11.4 <= Two file streams working on separale files

Similarly, the following statement declares infile as an ifstream object and attaches it
to the file data for reading (input).

ifstream dinfile("data"): // input only

The program may contain statements like:

outfile =< "TOTAL";
outfile =< sum;
infile => number;

infile »» string;

We can also use the same file for both reading and writing data as shown in Fig. 11.5. The
programs would contain the following statements:

Programl

3288 Ohject-Oriented Programming with C++

ofstream outfile("salary"); Jf creates outfile and connects
S "salary” to it

EFEEE

Program?
ifstream infile("salary"); /f creates infile and connects
J/ "salary" to it
Program 1
DI put
outfila data
galary
file
Program 2 get
diala

- & & &

infile

Fig. 11.5 <« Tuw file streams working on one file

The connection with a file is closed automatically when the stream object expires (when
the program terminates). In the above statement, when the program! is terminated, the
salary file iz disconnected from the outfile stream. Similar action takes place when the
program 2 terminates,

Instead of using two programs, one for writing data (output) and another for reading
data (input), we can use a single program to do both the operations on a file. Example.

aaaaa

outfile.close(); /[Disconnect salary from outfile
ifstream infile(“salary"); [/ and connect to infile

infile.close(); // Disconmect salary from infile

Copyrighted material

Working with Files #329

Although we have used a single program, we created two file stream objects, outfile (to
put data to the file) and infile (to get data from the file). Note that the use of a

statement like

outfile.close();

displays the same on the screen.

[WORKING WITH SINGLE FILE

disconnects the file salary from the output stream outfile. Remember, the object outfile
still exists and the salary file may again be connected to outfile later or to any other
stream. In this example, we are connecting the salary file to infile stream to read data.

Program 11.1 uses a single file for both writing and reading the data. First, it takes data
from the keyboard and writes it to the file. After the writing is completed, the file is closed.
The program again opens the same file, reads the information already written to it and

fI Creating files with constructor fumction

#include <iostream.h>
#include <fstream.h=

int main()

{
ofstream outf("I1TEM");
cout == "Enter item name:";
char name[30];
cin >> name;
outf =< name <= "\n";
cout =< “"Enter {item cost:";
float cost;
cin »>> cost;
outf =< cost =< "\n";
outf.close();
ifstream inf(*ITEM");

inf == name;
inf == cost;

/{ connect ITEM file to outf

[/ get nome from key board and

[write to file ITEM

/[get cost from key board and

[/ write to file ITEM

[DMsconnect ITEM file frow outf
/{ connect ITEM file fo inf

// read nome from file ITEM
ff reod cost from file ITEM

(Conéd)

330e Ohject-Oriented Programming with C++

cout << "\n";
cout << “Item name:" =< pname =< "\n";
cout <= "Item cost:" =< cost =< "\n";

inf.close(); {{ Disconnect ITEM from inf

return 03

PROGRAM 11.1

The output of Program 11.1 would be:

Enter item name:CD-ROM
Enter item cost:250

Item name:CD-ROM
[tem cost:250

cawlion
When a file is opened for writing only, a new file is created if there is no file of that name.
If a file by that name exists already, then its contents are deleted and the file is presented

as a clean file. We shall discuss later how to open an existing file for updating it without
losing its original contents.

Opening Files Using open()

As stated earlier, the function open() can be used to open multiple files that use the same
stream object. For example, we may want to process a set of files sequentially. In such cases,
we may create a single stream object and use it to open each file in turn. This is done as
follows:

file-stream-class stream-object;
gstream-object.open ("filename");

Example:
ofstream outfile; /{ Create stream (for output)
outfile.open("DATAL"); // Connect stream to DATAI
EMIHI.H'IE.EMEEE}; // Disconnect stream from DATAI
outfile.open("DATAZ); /| Connect stream to DATAZ

-Enutf:ile.ﬂ osel();: {/ Disconnect stream from DATAZ

Warking with Files & 331

The previous program segment opens two files in sequence for writing the data. Note
that the first file iz closed before opening the second one. This is necessary because a stream
can be connected to only one file at a time. Sec Program 11.2 and Fig. 11.6.

/[Creating files with open() function

#include <iostream.h=
#include <fstream.h>

int main()

{
ofstream fout; [/ create output stream
fout.open("country"); // connect “country® to it

fout << "United States of America\n";
fout << "United Kingdomin";
fout << "South Korea\n";

fout.close(); /{ disconnect “"country" and
fout.open(“capital); {{ connect “capital®

fout << "Washington\n";

fout =< "Londonin®;

fout << "Seoulin";

fout.close(); // disconnect "capital™

// Reading the files

const int N = 80; [/ size of line

char 1ine{N];

ifstream fing J/ create input stream
fin.open("country"); [/ connect “country® to it

cout <<"contents of country file\n®;

while{fin) /f check end-of-file
{
fin.getline(line, N); J/ read a line
cout << line ; [/ display it
|
fin.close(); // disconnect "country” and

(Contd)

Copyrighted material

332e Object-Oriented Programming with C++

fin.open("capital®); : J/ connect "capital®
cout << "\nContents of capital file \n";

while{fin)
{

fin.getline{line, N);
cout =< line ;

}

fin.close();

return 0;

}

PROGRAM 11.2

The output of Program 11.2 would be;

Contents of country file
United States of America
United Kingdom

South Korea
Contents of capital file
Washington
London
Seoul
Disk conneci one
file to fout —

——([111 Program

fin
‘ ———[T [[[—~{Program)

oonnect one
film 1o firn

Fig. 11.6 ¢ Streams working on multiple files |

At times we may require to use two or more files simultaneously. For example, we may
require to merge two sorted files into a third sorted file. This means, both the sorted files
have to be kept open for reading and the third one kept open for writing. In such cases, we

Copyrighted material

Working with Files 2333

need to create two separate input streams for handling the two input files and one output
stream for handling the output file. See Program 11.3.

READING FROM TWO FILES SIMULTAMEOUSLY

f{ Reads the files creoted in Progrom 11.2

finclude <jostream.h=
finclude =fstream.h= L
#include <stdlib.h> {/ for exit() function

int main()

const int SIZE = BO;
char 1ine[SIZE];

ifstream finl, finZ; /f create two input streams
finl.open{"country®);
finZ.open("capital®);

for{int 1=1; 1==10; 1++)

{
if(finl.eof () I= 0)
(
cout =< "Exit from coumtry \n"“;
exit(l);
}

finl.getline(line, SIZE);
cout =< "Capital of "<=< line ;

{
cout << "Exit from capital\n®;
exit(l);

1

fin2.getline(line,SIZE);
cout =< line =< "\n";

)

return 0;

The output of Program 11.3 would be:

Capital of United States of America
Washington

334e Object-Oriented Programming with C++

Capital of United Kingdom
Landan

Capital of South Korea
Seoul

Il 1.4 Detecting end-of-file

Detection of the end-of-file condition 12 necessary for preventing any further attempt to
read data from the file. This was illustrated in Program 11.2 by using the statement

while(fin)

An ifstream ohbject, such as fin, returns a value of 0 if any error occurs in the file
operation including the end-of-file condition. Thus, the while loop terminates when fin
returns a value of zero on reaching the end-of-file condition. Remember, this loop may
terminate due to other failures as well. (We will discuss other error conditions later.)

There iz another approach to detect the end-of-file condition. Note that we have used the
following statement in Program 11.3;

if(finl.eof ()} 1= 0) {exit{l);]

eofi() iz a member function of ios class. It returns a non-zero value if the end-of-filelEOF)
condition is encountered, and a zero, otherwise, Therefore, the above statement terminates
the program on reaching the end of the file.

|11.5 More about Open(): File Modes

We have used ifstream and ofstream constructors and the function open() to create new
files as well as to open the existing files. Remember, in both these methods, we used only
one argument that was the filename. However, these functions can take two arguments,
the second one for specifving the file mode. The general form of the function epen() with
two arguments is:

| stream-object .open("filename", mode);

The second argument mode (ealled file mode parameter) specifies the purpase for which
the file is opened. How did we then open the files without providing the second argument in
the previous examples?

The prototype of these class member functions contain default values for the second
argument and therefore they use the default values in the absence of the artual values. The

Copyrighted material

default

Working with Files 9335

values are as follows:

iogs::in for ifstream functions meaning open for reading only.
fos::out for ofstream functions meaning open for writing only.

The file mode parameter can take one (or more) of such constants defined in the class ios.

Table 1

1.2 lists the file mode parameters and their meanings.

Table 11.2 File mode parameters

' Parameter . xl na s n e O AR e SR
ios : app | Append to end-of-file
ios ;1 ate Go to end-of-file on opening
ioa : binary Binary file
i0g ;: in Open file for reading only
i0s : nocreate Open fails if the file does not exist
105 noreplace Open fails if the file already exists
08 31 out Open file for writing only
iog 1 trunc Delete the contents of the file if it exista
-~ nole ~

1. Opening a file in ios:zout mode also opens it in the ios:trunc mode by default.

2. Both ios:app and ios:ate take us to the end of the file when it is opened. The
difference between the two parameters is that the ios::app allows us to add data
to the end of the file only, while ios:ate mode permits us to add data or to modify
the existing data anywhere in the file. In both the cases, a file is created by the
specified name, if it does not exist.

3. The parameter ioszapp can be used only with the files capable of output.

4. Creating a stream using ifstream implies input and creating a stream using
ofstream implies output. So in these cases it is not necessary to provide the
mode parameters.

5. The fstream class does not provide a mode by default and therefore, we must
provide the mode explicitly when using an object of fstream class.

6. The mode can combine two or more parameters using the bitwise OR operator
(symbol |) as shown below:

fout.open(“data”, ios::app | ios:: nocreate)
_ This opens the file in the append mode but fails to open the file if it does not 1;::1':“._.."'i

Ill.ﬁ File Pointers and Their Manipulations

Each file has two associated pointers known as the file pointers. One of them is called the
input pointer (or get pointer) and the other is called the output pointer (or put pointer). We

336e Object-Onented Programming with C++

can use these pointers to move through the files while reading or writing. The input pointer
is used for reading the contents of a given file location and the output pointer is used for
writing to a given file location. Each time an input or output operation takes place, the
appropriate pointer is automatically advanced.

Default Actions

When we open a file in read-only mode, the input pointer is automatically set at the beginning
s0 that we can read the file from the start. Similarly, when we open a file in write-only
maode, the existing contents are deleted and the output pointer is set at the beginning. This
enables us to write to the file from the start. In case, we want to open an existing file to add
more data, the file is opened in ‘append’ mode. This moves the output pointer to the end of
the file (i.e. the end of the existing contents). See Fig. 11.7. '

"helio” file
Open for readingonly |H |E |L |L | © wanl.n1
input poinksr
Oipen in append mdsde
ot s geey |H- & L] o w|o|R|L |[D]
output pointer |
:
Cpan for writing anly i
1 output poinber

Fig. 11.7 - <= Action on file poinfers while opering a file

Functions for Manipulation of File Pointers

" All the actions on the file pointers as shown in Fig. 11.7 take place automatically by default.
How do we then move a file pointer to any other desired position inside the file? This is
possible only if we can take control of the movement of the file pointers ourselves. The file
stream classes support the following functions to manage such situations:

* seekg() Moves get pointer (input) to a specified location.
® seekpl) Moves put pointer{output) to a specified location.
& tellgl() Gives the current position of the get pointer.

& tellp() Gives the current position of the put pointer.

For example, the statement

infile.seekg(10);

Working with Files @337

maoves the file pointer to the byte number 10. Remember, the bytes in a file are numbered
beginning from zero. Therefore, the pointer will be pointing to the 11th byte in the file.

Consider the following statements:

ofstream fileout;
fileout.open{"hello", ios::app):
int p = fileout.tellp();

On execution of these statements, the output pointer is moved to the end of the file "hello”
and the value of p will represent the number of bytes in the file.

Specifying the offset

We have just now seen how to move a file pointer to a desired location using the ‘seek’
functions. The argument to these functions represents the absolute position in the file. Thas
is shown in Fig. 11.8.

file
start i and

oulfile.seakp(m);

e 11 BylEs —=

file poindier

Fig. 118 < Action of single argument seck function |

= e = e T Tae PR B R

‘Beek” functions seekg() and seekp() can also be used with two arguments as follows:

seekg (offset, refposition);
seekp (offset, refposition);

The parameter offset represents the number of bytes the file pointer is to be moved from
the location specified by the parameter refposition. The refposition takes one of the following
three constants defined in the jos class:

#® ios:beg start of the file
® jos:cur current position of the pointer
® jos:zend End of the file

The seekg() function moves the associated file's ‘get’ pointer while the seekp() function
moves the associated file's ‘put’ pointer. Table 11.3 lists some sample pointer offset calls and
their actions. fout is an ofstream ohject.

3388 Ohject-Oriented Programming with C++

Table 11.3 Fointer offset calls

Seek call Aetion
fout.seekglo, ios:beg); Go to atart
fout.seekgio, 1os:cur); Stay at the current position
fout.seekgio, ios:iend); o to the end of file
Fout.seekgim,ios;: beg); Move to {m + 1ith byte in the file
fout.seekgim, jos;cur): Go forward by m byte form the current position
fout. seekgl-m,ios:curl; o backward by m bytes from the current position
fout. seekgl-m,ioz;end); Go backward by m byvtes form the end

Il].? Sequential Input and Output Operations

The file stream classes support a number of member functions for performing the input and
output operations on files. One pair of functions, put() and get(), are designed for handling
a single character at a time. Another pair of functions, write() and read(), are designed to
write and read blocks of binary data.

put() and get() Functions

The function put({) writes a single character to the associated stream. Similarly, the funetion
get() reads a single character from the associated stream. Program 11.4 illustrates how
these functions work on a file. The program requests for a string. On receiving the string,
the program writes it, character by character, to the file using the put() function in a for
loop. Note that the length of the string is used to terminate the for loop.

The program then displays the contents of the file on the screen. It uses the function
get() to fetch a character from the file and continues to do so until the end-of-file condition
is reached. The character read from the file is displayed on the screen using the operator <<.

T1/0 OPERATIONS 0N CHARACTERS |

Finclude <fostream.h=
#include =fstream.h=
Finclude: =string.h=

int mainl)

{
char strina[80];

cout << "Enter.a string \n";
cin == string;

(Contd)

Hidden page

Hidden page

Working with Files & 341

for(int i=0; i=<d; i++) J/ clear array from memory
height[i] = 03

ifstream infile;
infile.open(filename);

infile.read({char *) & height, sizeof(height));

for(i=0; i<d: i++) '

{
cout.setf(ios::showpoint);

cout =< setw(l0) << setprecision(2)
<< height[i];
)

infile.close();

return 03

PROGRAM 11.5

The output of Program 11.5 would be:
175,50 153.00 167.25

- Reading and Writing a Class Object

We mentioned earlier that one of the shortcomings of the /0 system of C is that it cannot
handle uzer-defined data types such as class objectz. Since the class objects are the central
elements of C++ programming, it i# quite natural that the language supports features for
writing to and reading from the disk files ohjects directly. The binary input and output
functions read() and write() are designed to do exactly this job. These functions handle the
entire structure of an object as a single unit, using the computer’s internal representation
of data. For instance, the function write() copies a class object from memory byte by byte
with no conversion. One important point to remember is that only data memberz are written
to the dizk file and the member functions are not.

Program 11.6 illustrates how class objects can be written to and read from the disk files.
The length of the object is obtained using the sizeof operator. This length represents the
sum total of lengths of all data members of the object.

READING AND WRITING CLASS OBJECTS

#include <iostream.h>
#include =fstream.h=
#include <iomanip.h=
(Contd)

3420 Ohject-Oriented Programming with C++

class INVENTORY

{
char name[10]; // 1tem name
int code; [/ item code
float cost; [/ cost of each item
public:
void readdata(void);
void writedata(veid);
B
void INVENTORY :: readdata(void) f/ read from keyboard
{
cout =< "Enter name: *; cin >> name;
cout =< "Enter code: ®:; cin =» code;
cout =< "Enter cost: "; cin >> cbst;
}
void INVENTORY :: writedata(void) // formatted display on
{ /f screen
cout =< setiosflags(ios::left)
<< setw(l0) << name
<< setiosflags({ios::right)
<< setw(10) =< code
<< setprecision(2) °
<< setw(10) =< cost
== pnd];
}
int main()
{
INVENTORY item[3]; // Declare array of 3 objects
fstream file; {/ Input and output file

file.open("STOCK.DAT®, ios::in | 1os::0ut);
cout << "ENTER DETAILS FOR THREE ITEMS \n";
for(int i=0;i<3;i++)
i item[1] . readdata();
file.write((char *) & item[i],sizeof(item[i]));

(Contd)

Copyrighted material

Working with Files ® 343

file.seekg(D); J/ reset to start

cout =< "\nOUTPUT\nA\n";

for{i = 0z 1 <= 31 i++)

I file.read({({char *) & item[i], sizeof(item[i]));
item[i] .writedata();

}

file.close();

return 0;

PROGRAM 11.6

The output of Program 11.6 would be:

ENTER DETAILS FOR THREE ITEMS
Enter name: C++

Enter code:; 101

Enter cost: 175

Enter name: FORTRAN

Enter code: 102

Enter cost: 150

Enter mame: JAVA

Enter code: 115

Enter cost: 225

OUTPUT

(++ 101 175
FORTRAN 102 150
JAVA 115 225

The program uses “for’ loop for reading and writing objects. This is possible because we
know the exact number of objects in the file. In case, the length of the file is not known, we
can determine the file-size in terms of objects with the help of the file pointer functions and

use it in the “for’ loop or we may use whileifile) test approach to decide the end of the file.
These technigues are discussed in the next section.

Ill.E Updating a File: Random Acess

Updating is a routine task in the maintenance of any data file. The updating would include
one or more of the following tasks:

@ Displaying the contents of a file.

Hidden page

Hidden page

3460—

Object-Oriented Programming with C++

cout << "CONTENTS OF APPEMDED FILE \n";

while(inoutfile.read((char *) & item, sizeof item))
i

item.putdata();
)

[/ Find number of objects in the file
int last = inoutfile.tellg();
int n = last/sizeof(item);

cout << "Mumber of objects = " << n << "\n";
cout =< "Total bytes in the file = ™

< last == "hn":
J* >322322= MODIFY THE DETAILS OF AN ITEM =<<<<c<<< */
cout =< "Enter object pumber to be updated \n®;

int object;

cin == pbject;

cin.get(ch);

int location = (object-1) * sizeof(item):

if{inoutfile.eof())
inoutfile.clear();

inputfile.seekp(location);

cout =< "Enter new values of the object \n";
item.getdata();

cin.get(ch);

inoutfile.write{(char *) & itam, sizeof item) =< flush:
J* >5533333555>> SHON UPDATED FILE c<cccecccecce<e */
inoutfile.seeka(0}); //ao to the start

cout << "CONTENTS OF HPDATED FILE \n";

while{inoutfile.read({char *) & item, sizeof item})
{
(Contd)

Hidden page

Hidden page

Working with Files @349

5. We may use an invalid file name.
6. We may attempt to perform an operation when the file is not ﬂpened for that

Purpose.,

The C++ file stream inherits a 'stream-state’ member from the class ios. This member
records information on the status of a file that is being currently used. The stream state
member uses bit fields to store the status of the error conditions stated above.

The class ios supports several member functions that can be used to read the status
recorded in a file stream. These functions along with their meanings are listed in

Table 11.4.

Table 11.4 Error handling ﬁm::h'an.s

e

Bt gl

eof() Returns ¢rue (non-zero value) if end- l'.'rfﬁlﬂ ia &nmunterﬂd Whl]; readmg'.
Otherwise returns falze(zera)

fail() Returns ¢rue when an input or output operation has failed

bad() Returns frue if an invalid operation is attempted or any unrecoverable

error has eccurred. However, if it is false, it may be possible to recover
from any other error reported, and continue operation.

goodi) Returns true if no error has occurred. This means, all the above functions
are false, For instance, if file.good(} is frue, all is well with the stream

file and we can proceed to perform [0 operations. When it returns fafse,
no further operations can be carried out.

These functions may be used in the appropriate places in a program to locate the status
of a file stream and thereby to take the necessary corrective measures. Example:

ifstream infile;
infile.open(“ABC");
while(linfile.fail())

..... (process the file)

if(infile.eof())
{

else

ceens (terminate program normally)

Hidden page

Working with Files # 351

The command-line arguments are typed by the user and are delimited by a space. The
first argument iz always the filename (command name) and contains the program to be
executed. How do these arguments get into the program?

The main() functions which we have been using up to now without any arguments can
take two arguments as shown below:

main{int arac, char * argv([])

The first argument arge (known as argument! counter) represents the number of
arguments in the command line. The second argument argv (known as argument vector) is
an array of char type pointers that points to the command line arguments. The size of this
array will be equal to the value of arge. For instance, for the command line

C > exam data results

the value of arge would be 3 and the argv would be an array of three pointers to strings as
shown below:

argv[0] =--> exam
argv[l] ---> data
argy[2] =--> results

Note that argv[0] always represents the command name that invokes the program. The
character pointers argv[l] and argv[2] can be used as file names in the file opening
statements as shown below:

infile.openlargv(l]);: // open data file for reading

& 'ER]

putfile,open{argv[2]); // open results file for writing

Program 11.8 illustrates the use of the command-line arguments for supplying the file
names. The command line is

test 0DD EVEM

The program creates two files called ODD and EVEN using the command-line arguments,
and a set of numbers stored in an array are written to these files. Note that the odd
numhbers are written to the file ODD and the even numbers are written to the file EVEN.
The program then displays the contents of the files.

Copyrighted material

4
.

e g E"'l!:l,_',{ ""EE"‘:E-

?.

W

T e B e
kS BE B

Copyrighted material

Warking with Files # 353

foutl.close();
foutZ.close();

ifstream fing;
char ch;
for(1=1; i<argc; 1++)
{
fin.open{argv[i]);
cout =< “"Contents of " =< argv[i] << "\n";

do
{ .
fin.get{ch);: // read a value
cout <= ch; // display it
}
while(fin);
cout << "\n\n";
: fin.close();
]
return 0;

}

PROGRAM 11.8

The output of Program 11.8 would be:

Contents of ODD
11 33 55 77 99

" Contents of EVEN
22 44 66 &8

\ - SUMMARY _ -

4% The C++ I/ system contains classes such as ifstream, ofstream und fstream to deal

with file handling. These classes are derived from fstreambase class and are declared
in a header file insfream.

< A file can be opened in two ways by using the constructor function of the class and
using the member function open() of the class.

% While opening the file using constructor, we need to pass the desired filename as a
parameter to the constructor.

& The openl) function can be used to opon multiple files that use the same stream object.

The second argument of the open() function called file mode, specifies the purpose for
which the file is opened.

Copyrighted material

354 @ Object-Oriented Programming with Ce+

¢ If we do not specify the second argument of the open() function, the default values

gpecified in the prototype of these class member functions are used while opening the
file. The default values are as follows:

ios :: inm - for ifstream functions, meaning=open for reading omly.
ios :: out — for ofstream functions, meaning-open for writing omly.

4 When a file iz opened for writing only, a new file is created only if there is no file of that
name. If a file by that name already exists, then its contents are deleted and the file is
presented as a clean file.

4> To open an existing file for updating without losing its original contents, we need to
open it in an append mode.
4> The fstream class does not provide a mode by default and therefore we must provide

the mode explicitly when using an object of fstream class. We can specify more than
one file modes using bitwise OR operator while opening a file.

&» Each file has associated two file pointers, one is called input or get pointer, while the
other is called output or put pointer, These pointers can be moved along the files by
member functions.

< Functions supported by file stream classes for performing 'O operations on files are as
follows:

put{) and get() functions handle single character at a time,
write() and read() functions write and read blocks of binary data.

¢» The class ios supports many member functions for managing errors that may oecur
during file operations.

4% File names may be supplied as arguments to the main() function at the time of invoking
the program. These arguments are known as command-line arguments,

Key Terms

» append mode » binary format

» arge » character format
» argument counter > clear()

» argument vector » command-line

> argv » end-of-file

> bad() > eofi()

» binary data > fail()

(Contd)

file mode

file mode parameters
file pointer
file stream classes
file streams
filebuf

files

fstream
fatreambase
get pointer
gotl()

goodi)
ifstream
input pointer
input stream
ins

ioscapp
ios:ate
ios:beg
ios:binary
iosscur
ios:zend

I Review Questions

Y Y Y Y Y Y Y Y Y YY Y YYYYYYYYYY

Working with Files

11.1 What are input and output streams?

11.2

¥ Y Y Y Y Y Y Y Y Y Y Y Y Y YYYYYYY

@355

ios:in
iosznocreate
o8 ;out
ios:moreplace
ios:iirune
iostream
ofstream
open()

output ponter
output stream
put pointer
put()

random gccass
read()
seekg()
seekp()
sizeof()
streams
tellg()

tellp()
updating
write()

What are the steps involved in using a file in a C++ program?

11.3 Describe the various classes available for file operations.

11.4

What is the difference between opening a file with a constructor function and

opening a file with open() function? When is one method preferred over the

other?

11.5
fin stream

11.6
11.7

if with a file name DATA.

Explain how while(fin) statement detects the end of a file that is connected to

What is a file mode? Describe the various file mode options available.
Write a staternent that will create an object called fob for writing, and associale

356 Object-Oriented Programming with C++

11.8 How many file objects would you need to create to manage the following situations?
ta) To process four files sequentially.
ib) To merge two sorted files into a third file.
Explain.

11.9 Both ios::ate and fos:app place the file pointer at the end of the file (when it is
opened). What then, is the difference between them#

11.10 What does the “current position” mean when applied to files?
11.11 Write stafements using seekg() to achieve the following:
(a) To move the pointer by 15 positions backward from current position.
(b} To go to the beginning after an operation is over.
(e} To go backward by 20 bytes from the end.
(d} To go to byte number 50 in the file.
11.12 What are the advantages of saving data in binary form?

11.13 Describe how would you determine number of objects in a file. When do you
need such information?

11.14 Describe the various approaches by which we can detect the end-of-file condition

successfully.
11.15 State whether the following statements are TRUE or FALSE.
(a) A stream may be connected fto more than one file at a time.
(b} A file pointer alwavs contains the address of the file,
(el The statement
outfile.write((char *) & obj,sizeof{obj));
writes only doto in obj fo outfile.
{d) The ios:ate mode allows us to write data anywhere in the file.
(e) We can add data to an existing file by opening in write mode.
(f)y The parameter iosmapp can be used only with the files capable of output,

(g) The data written to a file with write() function can be read with the get()
function.

th) We can use the functions tellp() and tellg() interchangeably for any file.

(i) Binary files store floating point values more accurately and compactly than
the text files.

(j) The fin.fail() call returns non-zero when an operation on the file has failed.

I Debugging Exercises

11.1 Identify the error in the following program.

#include =jostream.h=
#include <fstream.h>

void mainl)

Copyrighted maierial

Hidden page

358 Ohject-Oriented Programming with C++

while(!in.getline(buffer, 80))
{

cout =< buffer << endl;

while{!in.getline(buffer, 80).eof())
{

cout =< puffer =< endl;

}

11.4 Find errors in the following statements.
(a) ifstream.infile("DATA");
(b) finl.getline(); //finl 15 input stream
(¢) if(finl.eof() == 0) exit{l);
(dy close(fl);
(e) infile.open{arge);
(fH sfinout.open(file,fos::in |fos::out| ios::ate);

I Programming Exercises

11.1 Write a program that reads a text file and creates another file that iz identical
except that every sequence of conseculive blank spaces is replaced by a single
space.

11.2 A file containg a {ist of telephone numbers in the following form:;

John 23456

Ahmed 9876

separated by white spaces. Write a program to read the file and output the list in
two columns, The names should be left-justified and the numbers right-justified.

11.3 Write a program that will create a data file containing the list of telephone numbers
given in Exercise 11.2. Use a class object lo store each sel of data,

11.4 Write an interactive, menu-driven program thal will access the file created in
Exercise I11.8 and implement the following tasks.
(a) Determine the telephone number of the specified person.
(b) Determine the name if a telephone number s known.

ic) Update the telephone number, whenever there (s a change.

Copyrighted material

12

| Templates |

Key Concepts 12.1 Introduction
Templates is one of the features added to
» Generic programming C++ recently. It iz a new concept which
» Multiple parameters in class enable us to define generic classes and
templates funr:t%nns and th}lE pruvidlea support F'ur
» Function templates it ”‘ﬁmmmmﬁ'ﬂﬂm Programiving
P late functions manappmachmfhereget_wnct}'paam'eused
Pyipiake funchons as parameters in algorithms so that they
» Member function templates work for a variety of suitable data types

» (Class templates and data structures.

: IE';l]lTI]tF:]]?F;?I.::J:;: ::H:H in class A template canlbe used to create a family
SR ; of classes or functions. For example, a class
templates template for an array class would enable
» Overloading of template funetions us to create arrays of various data types
> Nﬂn-‘r:lr"pf_ﬁ r.:_:-'|'|1_'|_'_|'|;1_1:|_- aArguments such as int Array and float array.

Similarly, we can define a template for a
function, say mul(), that would help us create various versions of mul() for multiplying int,
float and double type values.

A template can be considered as a kind of macro. When an object of a specific type is
defined for actual use, the template definition for that class is substituted with the required
data type. Since a template iz defined with a parameter that would be replaced by a specified
data type at the time of actual use of the class or function, the templates are sometimes
called parameterized classes or functions.

360 e Object-Ortented Programming with Cs+
12.2 Class Templates

Consider a vector class defined as follows:

class vector
{
int *v;
int size;
public:
vector(int m) /[create a null vector
{
v = new int[size = m];
for(int i=0; i<size; i++)

v[i] = 03
I
vector(int *a) /[create a vector from an array
{
for{int 1=0; i<size; i++)
v[i] = a[i];
}
int operator*(vector &y) /! scalar product
{
int sum = 0;

for(int i=0; i<size; i++)
sum += this -> y[i] * y . v[i]:
return sum;
}
1B

The vector class can store an array of int numbers and perform the scalar product of two
int vectors as shown below:

int main()

{
int x[3] = {1.2,3);
int y[3] = {4,5.6};

vector v1(3); /[Creates o null vector aof 3 integers
vector vZ(3):

vl = x3 /[Creates vl from the array x

v = ¥}

int B = vl * w2;
cout =< "R = " << R
return 0;

Copyrighted material

Templates # 361

Now suppose we want to define a vector that can store an array of float values. We can
do this by simply replacing the appropriate int declarations with float in the vector class.
This means that we have to redefine the entire class all over again.

Assume that we want to define a vector class with the data type as a parameter and then
use this class to ereate a veetor of any data type instead of defining a new class every time.
The template mechanism enables us to achieve this goal.

As mentioned earlier, templates allow us to define generic classes. It is a simple process _
to ereate a generic class using a template with an anonymous type. The general format of a
class template is:

template<class =
class claossnome
{
I —
Jf class member spectificotion
/{ with enonymous type T
[/ wherever appropriote
L —
¥

The template definition of vector class shown below illustrates the syntax of a template:

template<class T>
class vector

{
T v; /{ Type T vector
int size;
public:
vector(int m)

v = new T [size = m];
for(int i=0; i=size; i++)
w[i] = O
i
vector(T* a)

for{int i=0; i<size, i++)

v[1] = a[i];:
T operator*(vector Ly)
T sum = 0;
for(int 1=0; i=size; i++)

sum += this -= v[i] *y . v[i];
return sum:

s

Copyrighted material

362e Object-Oriented Programming with C++

- reote ~
The class template definition is very similar to an ordinary class definition except the
prefix template<class T> and the use of type T. This prefix tells the compiler that we
are going to declare a template and use T as a type name in the declaration. Thus, vector
has become a parameterized class with the type T as its parameter. T may be substituted
by any data type including the user-defined types. Now, we can create vectors for holding

\gil’l’emnt data types. ,
Example:
vector <int> v1{10); ff 10 element int wvector
vector =float> vZ(25); {! 25 element floot vector
note

The type T may represent a class name as well. Example:

vector <complex> vi(5); ff vector of § complex numbers

A class created from a class template is ealled a template class. The syntax for defining an
ohject of a template class is:

classname<type> objectname(arglist);

This process of creating a specific class from a class template is called instantiation. The
compiler will perform the error analysis only when an instantiation takes place. It is,
therefore, advisable to create and debug an ordinary class before converting it into a template.

Programs 12.1 and 12.2 illustrate the use of a vector class template for performing the
scalar product of int type vectors as well a= float tvpe vectors.

Example of Class Template

finclude <iostream=
using namespace std;
const size = 3;

template =class T=
class vector
{
T" v; [l type T vector
public:
vector()

{
(Contd)

The output of the Program 12.1 would be:

R =32

ANOTHER EXAMPLE OF CLASS TEMPLATE

Copyrighted material

364 e Chyect-Oniented Programming with C++

class yector

{
T wv; I/ type T vector
public:
vectar()
{
v = new Tlsizel;
for(int i=0;i<size;i++)
v[i] = 0;
]
vector(T* a)
1
for(int i=0;i<size;i++)}
w[i]l = a[il;
}
T operator*(vector &y)
{
T sum = 0y
for{int i=0;i<size;i++)
sum += this -= v[i] * y.v[1];
return sum;
)
H
int main{)
{
float x[3] = {1.1.2.2.3:3};
float v[3] = {4.4.5.5.6.6};

vector =float> vl;

vector =float> v2;

wl = x;

V2 = y:

Tlpat R = v1 * vZ;

cout =< "R = " << R <= "\n";

return 0

PROGRAM 12.2

The output of the Program 12.2 would be;

R = 38.720001

Templates # 365

IIZ.S Class Templates with Multiple Parameters

We can use more than one generic data type in a class template. They are declared as a
comma-separated list within the template specification as shown below:

template<class 71, class 72, .»
class clossmame

{

{Body of the class)

];..

Program 12.3 demonstrates the use of a template class with two generic data types.

TWl GEMERIC DATA TYPES IN A CLASS DEFINITION

#include <iostream
using namespace std;

template=class T1, class T2=
class Test

{
Tl a;
T2 b;
public:
{est{?l x, T2 ¥)

a=x;
b =y;

void show()

{ cout << g =< " and " << b << "\n";
b
1nt main()

Test <float,int> testl (1.23,1

.123):
Test <int,char> test2 (100,'W")

testlishnuE}:_
test2.show();

return 0;

PROGRAM 12.3

366 @ Ohject-Orented Programming with C++
The output of Program 12.3 will be would be:

1.23 and 123
100 and W

|1z.-i Function Templates

Like class templates, we can alzo define function templates that could be uzed to create a
family of functions with different argument types. The general format of a function template is:

template<class T>
returntype functionome (arguments of type T)

[

[/ Body of function
[/ with type T
/! wherever appropriate
P
}

The function template syntax is similar to that of the class template except that we are
defining functions instead of classes. We must use the template parameter T as and when
necessary in the function bedy and in its argument list.

The following example declares a swap() function template that will swap two values of
a given type of data.

template=class T»>
void swap(Thx, Thy) -~

{
T temp = x;
X =y
y = temp;
|

This essentially declares a set of overloaded functions, one for each type of data. We can
invoke the swap() function like any ordinary function. For example, we can apply the
swap() function as follows:

void f(int m,int n,float a,float b)

{
swap({m,n); [/ swap two integer volues
swap{a,b): /[swap two float valuwes
Il cenas

Hidden page

Hidden page

Hidden page

370

Obfect-Oriented Programming with C++

AN APFLrtiilnI'ﬁ

#include <iostream=
#Finclude <iomanip>
#include <cmath>

using namespace sitd;

template <class T=
void roots(T 2,7 b,T c)

}

Td=b*h - d*ascy

if(d == Q) // Roots are equal
{
cout << "Rl = R2 = " << -b/(2%a) << endl;
else if(d = 0) , {{ Two real roots
{

cout << "Roots are real \n";
float R = sqrtid);

float R1 = (-b+R)/{2%a);
float R2 = (-b-R)/(2%a);

cout == "Rl = ¥ == Rl =< " and ";

cout == A2 = * =< BF =< ppd]; .
! I
glse /f Roots are complex

cout =< “"Roots are complex \n®;

float R1 = -b/(2*a}:

float R2 = sgrt(-d}/(2*a);

cout =< "Real part = " << Rl =< endl;
cout << "Imaginary part = " << RZ;
cout =< endl;

int main()

{

cout =< “"Integer coefficients \n";
roots(1,-5,6);

cout =< "\nFloat coefficients Yn";
roots{1.5,3.6,5.0);

return 0;

PROGRAM 12.6

Copyrighted material

Templates 2371
The output of Program 12.6 would be:

Integer coefficients
Roots are real

Rl = 3 and RZ = 2

Float coefficients

Roots are complex

Real part = -1.2
Imaginary part = 1.375985

|12.5 Function Templates with Multiple Parameters

Like template classes, we can use more than one generic data type in the template statement,
using a comma-separated list as shown below:;

template<class 71, class 72, .»
returntype functionnome (arguments of types T1, T2,.)

vrees (Body of function)

EE+AE

}

Program 12.7 illustrates the concept of using two generic types in template functions.

FUNCTION WITH TWO GENERIC TYPES

#Finclude <iostream=
#include =string>

using namespace std;

template=class T1, class T2»
void display(Tl x, TZ y)
{

Ccout === T sy Yipf

int main()

{

display(1999, “EBG");
display(12.34, 1234);
return 0;

PROGRAM 12.7

372e Object-Oriented Programming with C++

The output of Program 12.7 would be:

1999 EBG
12.34 1234

I 12.6 Overloading of Template Functions

A template function may be overloaded either by template functions or ordinary functions
of its name. In such cases, the overloading resolution is accomplished as follows:

1. Call an ordinary function that has an exact match.
2. Call a template function that could be created with an exact match.
3. Try normal overloading resolution to ordinary functions and call the one that matches.

An error is generated if no match is found. Note that no automatic conversions are applied
to arguments on the template functions. Program 12.8 shows how a template function is
overloaded with an explicit function.

TEMPLATE FUNCTION WITH EXPLICIT: FUNCTION

#include <iostream
#include =<string>

using namespace std;

template =class T=
vold display(7 x)
{

|
void display({int x) [/ overlogds the generic displayi)

|
}

cout =< "Template display:

o€ N =t *yn":

" oo ox = "\n":

cout << “Explicit display:

int main()

{
display(100);
display(12.34):
display('C'):

return 03

PROGRAM 12.8

Hidden page

374e Ohject-Oriented Programming with C++

vector<T> :: vector(int m)

{
v = new T[size = m]:
for{int i=0; i=<size; i++)
v[i] = Oy
}

template< class T=
vector<T> :: vector{T* a)
i
for(int 1=0; i<size; i++)
v[i] = ali];
)

template< class T>
T vector<T> :: operator*(vector & y)
{
T sum = 0;
for(int 1 = 05 1 < size; i++)
sum += this == v[i] * y.v[i];
return sum;

i '

I 12.8 Non-Type Template Arguments

We have seen that a template can have multiple arguments. It is also possible to use non-
type arguments. That ig, in addition to the type argument T, we can also use other arguments
such as strings, function names, constant expressions and built-in types. Consider the
following example:

template=class T, int size=
class array
{

T a[size]; /[outomgtic orray initiolizotion

This template supplies the size of the array as an argument. This implies that the size of
the array is known to the compiler at the compile time itself. The arguments must be
specified whenever a template class is created. Example:

array<int, 10> al; / Arrgy of 10 integers
array<float,5> aZ; ff Array of § floots
array<char,20> aj; S String of size 20

The size is given as an argument to the template class.

Copyrighted material

Templates 8375

\ . SUMMARY /

C++ supports a mechanism known as template to implement the concept of generic
programming.

% Templates allows us to generate a family of classes or a family of funetions to handle

&t ¢

& ¢

different data types.

Template classes and functions eliminate code duplication for different types and thus
make the program development easier and more manageahle.

We can use multiple parameters in both the class templates and function templatas.
A specific class created from a class template is called a template clazs and the process

of creating a template class is known as instantiation. Similarly, a specific function
created from a function template 12 called a template function.

Like other functions, template functions can be overloaded.

Member functions of a class template must be defined as function templates using the
parameters of the class template.

¢ We may also use non-type parameters such basic or derived data types as arguments

templates.
Key Terms

» bubble sort » parameteriged classes
» - class template » parameterized functions
> displayi) > swapping
» . explicit fonction * swapl)
» . function template » template
¥+ generic programming » template class
» 1 inetantiation » template definition
» “member function template > template function
»- multiple parameters » template parameter
» overloading » template specification
> parameter > templates

12.1
12.2

12.3
12.4
12.6

12.6

12.7

Object-Oriented Programming with C++

What is generic programming? How is it implemented in C++?
A termnplate can be considered as a kind of maero. Then, what is the difference
between themf
Distinguish between overloaded funections and function templates.
Distinguish between the terms class template and template class.
A elass (or function) template is known as a parameterized class (or function).
Comment.
State which of the following definitions are illegal.
(a) template<class T=>
class city
R -
{h) template=class P, R, class 5=
class city
{ o}
(c) template=class T, typename 5=
class city
{— 1
{d) template<class T, typename 5=
class city
| P T
(@) class<class T, int size=1l(0=
class 1ist
 — }
(f) class<class T = int, int size>
class list
[-}
Identify which of the following function template definitions are illegal.
{a) template=class A, B>
void fun(A, B)
{ —};
{b) template=class A, class A=
void fun(A, A)
{ — 1
(c) template=class A=
void fun{A, A)
[}}

2377

{ F
Debugging Exercises
12.1 Identify the error in the following program.
#include <ipstream.h>
class Test
{
int intNumber;
float floatMumber;
public:
Test()
{
intNumber = 0;
floatNumber = 0.0;
}
int getNumber()
{
return intNumber;
I
float getNumber()
{
return floatMumber;
I
bi
vold main()
{
Test objTestl;
objTestl.getNumber();
}
12.2 Identify the error in the following program.

Templates

{d) template<class T, typename R>
T fun(T, R)
[

() template<class A=»
A fun(int *A)

#include <jostream.h>
template =class Tl, class T2=

Hidden page

Hidden page

. - o

¥Y¥¥Yy ¥ ¥ ¥ ¥¥YY¥%

13

Exception Handling |

Key Concepts

Errors and exceptions
Throwing mechanism

Multiple catching

Rethrowing exceptions
Exception handling mechanism
Catching mechanism

Catehing all exceptions

Restricting exceptions thrown

13.1 Introduction

We know that it is very rare that a program
works correctly first time. It might have
bugs. The two most common types of bugs
are [ogic errors and syntactic errors. The
logic errors oceur due to poor understanding
of the problem and sclution procedure. The
syntactic errors arise due to poor
understanding of the language itself We
can detect these errors by using exhaustive
debugging and testingr procedures.

We often come across some peculiar
problemsa other than logic or syntax errors.
They are known as exceptions. Exceptions
are run time anomalies or unusual
conditions that a program may encounter
while executing. Anomalies might include

conditions such as division by zero, access to an array outside of its bounds, or running out
of memory or disk space. When a program encounters an exceptional condition, it is important
that it is identified and dealt with effectively. ANSI C++ provides built-in language features
to detect and handle exceptions which are basically run time errors.

Exception handling was not part of the original C++. It is a new feature added to ANSI
C++. Today, almost all compilers support this feature. C++ exception handling provides a

Exception Handling 8 381

type-safe, integrated appi'oach, for coping with the unusual predictable problems that arise
while executing a program.

|13.2 Basics of Exception Handling

Exceptions are of two kinds, namely, synchronous execeptions and asynchronous exceptions.
Errors such as "out-of-range index" and "over-flow" belong to the synchronous type exceptions.
The errors that are caused by events bevond the control of the program (such as keyboard
interrupts) are called asynchronous exceptions. The proposed exception handling mechanism
in C++ is designed to handle only synchronous exceptions.

The purpose of the exception handling mechanism is to provide means to detect and
report an "exceptional circumstancs” so that appropriate action can be taken. The mechanism
suggests a separate error handling code that performs the following tasks:

1. Find the problem (Hif the exception).

2. Inform that an error has occurred (Throw the exception).
3. Receive the error information (Catch the exception).

4. Take corrective actions (Handle the exception).

The error handling codiz basically consists of two segments, one to detect errors and to
throw exceptions, and the other to catch the exceptions and to take appropriate actions.

|15.3 Exception Handling Mechanism

C++ exception handling mechanizm is

basically built upon three k eywords, namely,

try, throw, and catch. The keyword try is try block
used to preface a block of statements

{surrounded by braces) which may generate Detects and throws
exceptions. This block of stsitements is known an exception

as try block. When an exce:ption is detected,
it is thrown using a throw statement in the

try block. A catch bloclk defined by the Exception
keyword eateh ‘catches’ the exception obpect
‘thrown’ by the throw statement in the try cateh block
block, and handles it appropriately. The
relationship is shown in Fijz. 13.1. Catches and handies
the exception
The eateh block that catiches an exeeption

must immediately follow the try block that

throws the exception. The general form of Fig. 13.1 4= The block Hirowing exception
these two blocks are as follows:

382e Object-Oriented Programming with C++

try
{
throw exception; J/ Block of statements which
srara ' J[detects and throws an exception
-}
catch(type arg) /| Catches exception
{
..... J/ Block of stotuments that
..... /[handles the evception
}

When the try block throws an exception. the program control leaves the try block and
enters the catch statement of the catch block. Note that exceptionz are objects used to
transmit information about a problem. If the type of object throw'n matches the arg type in
the catch statement, then catch block is executed tor handling the exception. If they do not
match, the program is aborted with the help of the abort() furiction which is invoked by
default. When no exception i=s detected and thrown, the control goes to the statement
immediately after the catch block. That is, the catch block is skiproped. This simple try-catch
mechanism is illustrated in Program 13.1.

TRY BLOCKE THROWING AN EXCEFTIDN

#nclude <iostreams

using namespace std;
int main()
{
. int a,b;
cout << "Enter Values of a and b ‘\n";
cin *> a3
cin »> b;
int x = a-b;
try
{

“Af(x 1= 0)

{

(Cantd)

Copyrighted maierial

Exreption Hondiing # 383

colt == *Result{a/x) = " <@ fn << "\n";
I
else : {/ There is an exception
{
throw(x); // Throws int object
I
|
catch(int 1) [/ Catches the exception

{

cout <= "Exception caught: x = ® << x =< "\n";
|
cout <= "END";

return 0;

PROGRAM 13.1

The output of Program 13.1:

First H'un
Enter Yalues of a and b
20 165
Result({a/x) = 4
END

Second Run
Enter Values of a and b
10 10
Exception caught:; x = 0
END

Program detects and catches a division-by-zero problem. The output of first run shows a
successful execution. When no exception is thrown, the eateh block is skipped and execution
resumes with the first line after the eateh. In the second run, the denominator x becomes
zero and ther-efore a division-by-zero situation occurs. This exception is thrown using the
ohject . Sinoe the exception object is an int type, the cateh statement containing int type
argument catches the exception and displays necessary message.

Most often, exceptions are thrown by functions that are invoked from within the try
blocks. The point at which the throw is executed is called the throw point. Once an exception
is thrown to thiz cateh block, control eannot return to the throw point. This kind of relationship
is shown in Fig. 13.2.

384e Ohject-Oriented Programming with C++

Throw point

Function that causes
an exception

Throw Iinvokes a function that
exception containg an exception

Catches and handies
thi exception

The general format of code for this kind of relationship is shown below:

Copyrighted material

Exception Handling *385

riode

The try block is immediately followed by the ecatch block, irrespective of the location of
the throw point.

Program 13.2 demonstrates how a try block invokes a function that generates an exception.

INVOKING FUNCTION THAT GENERATES EXCEPTION

/! Throw point outside the try block
#include <ipstream=
using namespace std;

void divide(int x, int y, int z)

{
cout == "\nWe are inside the fumction \n";
if{{x-y) 1= 0) J/ 1t is OK

int R = z/({x-y};
cout =< "Result = " =< R =< "\p";

else /| There is a problem . -
throw(x-y); [/ Throw point :

|

int main()

{

try

{
cout << "We are inside the try block \n";
divide(10,20,30); // Invoke divide[)
divide(10,10,20); // Invoke divide()

I

catch(int 1) /! Catches the exception

{

cout << "Caught the exceptiom \n";
1
return 03

PROGRAM 13.2

Hidden page

Exception Handling @ 387

braces. The catch statement catches an exception whose type matches with the type of
catch argument. When it is caught, the code in the cateh block is executed.

If the parameter in the catch statement is named, then the parameter can be used in the
exception-handling code. After executing the handler, the control goes to the statement
immediately following the catch block.

Due to mismatch, if an exception is not caught, abnormal program termination will occur.,
It is important to note that the catch block is simply skipped if the catch statement does
not catch an exception.

Multiple Catch Statements

It is possible that a program segment has more than one condition to throw an exception. In
such cases, we ean associate more than one cateh statement with a try (much like the
conditions in a switch statement) as shown below:

try
{
// try block
}
catch(typel arg)
{
/[catch blockl
I
catch(type? arg)
{
J/ catech block2
I

EFFFEE

& F R

catch(typeN arg)
{

}

When an exception is thrown, the exception handlers are searched in order for an
appropriate match. The first handler that yields a match is executed. After executing
the handler, the control goes to the first statement after the last catch block for that
try. (In other words, all other handlers are bypassed). When no match is found, the program
i8 terminated.

f/ catch blockN

It is possible that arguments of several catch statements match the type of an exception.
In such cases, the first handler that matches the exception type is executed.

Hidden page

Hidden page

Hidden page

Exception Handling @391

reode

Remember, catch(...) should always be placed last in the list of handlers. Placing it
before other cateh blocks would prevent those blocks from catching exceptions.

I 13.6 Rethrowing an Exception

A handler may decide to rethrow the exception caught without processing it. In such
situations, we may simply invoke throw without any arguments as shown below:

Ehrow;

This causes the current exception to be thrown to the next enclosing try/cateh sequence
and is caught by a catch statement listed after that enclosing try block. Program 13.5
demonstrates how an exception is rethrown and caught.

#include <iostream-
using namespace std;
void divide(double x, double y)

(
cout << "Inside function \n";

try
{
tf(y == 0.0)
throw wi /! Throwing double
else
cout << "Division = " =< xfy << "\n";
|
catch({double) {{ Catch o double

{
cout << "Caught double inside funmction ‘n";
Ehrow; /f Rethrowing double

]

cout << "End of function \n\n®;

|

int main{)
{
cout =< "Inside main \n";

(Comid)

3928 Object-Oriented Programming with Ces

try
|

divide(10.5,2.0)¢
: divide(20.0,0.0);
Eatch{duuh]e]

'l
|

cout << "End of main \n*":

cout << "Caught double inside main ‘n®;

return 03

PROGRAM 13.5

The output of the Program 13.5:

Inside main

Inside function
Diwigsion = 5.25
End of function

Inside function

Caught double inside function
Caught double inside main
End of main

When an exception is rethrown, it will not be caught by the same catch statement or any
other catch in that group. Rather, it will be caught by an appropriate catch in the outer
try/eatch sequence only.

A eatch handler itself may detect and throw an exception. Here again, the exception
thrown will not be caught by any catch statements in that group. It will be passed on to the
next outer try/cateh sequence for processing.

13.7 Specifying Exceptions

It is possible to restrict a function to throw only certain specified exceptions. This is achieved
by adding a throw list clause to the function definition, The general form of using an

exceplion specification is:

type function(arg-1ist) throw (type-list)

...... Function body

Hidden page

Hidden page

Exception Handling @ 395

< A try block may throw an exception directly or invoke a function that throws an
exception. Irrespective of location of the throw point, the catch block iz placed
immediately after the try block.

% We can place two or more catch blocks together to catch and handle multiple types of
exceptions thrown by a try block.

& It is also possible to make a catch statement to catch all types of exceptions using
ellipses as its argument.

% We may also restrict a function to throw only a set of specified exceptions by adding a
throw specification clause to the function definition.

Key Terms
» abort() function » multiple catch
» asynchronous exceptions » out-of-range index
» bugs > overflow
» eatch block » rethrowing exceptions
» eatchi...) statement » synchronous exceptions
» catching mechanism » syntactic errors
> errors > throw
» exception handler » throw point
» exception handling mechanism > throw statement
» exception specifyving » throwi)
» exceptions » throwing mechanism
» logic errors » try block

IReuierum

13.1 What is an exception?
13.2 How is an exception handled in C++7

13.3 What are the advantages of using exception handling mechanism in a program?
13.4 When should a program throw an exception?

13.5 When is a catch(...) handler is used?

13.6 What iz an exception specification? When is if used?

13.7 What should be placed inside a try block?

13.8 What should be placed inside a cafch block?

13.9 When do we used multiple cateh handlers?

Hidden page

13.2

Exception Handling

break;
case 30:

throw "Employee®;

break;

}

void operator ++()

[

age+=10;

F

void main()

{
Person objPerson(10);
objPerson.getOccupation();
++objPerson;
objPerson.getOccupation();
++objPerson;
objPerson.getOccupation();

}

Identify the error in the following program.

fFinclude <iostream.h>

void callFunction{int i)
1
(1)
throw 1;
else
throw 03

|

void callFunction({char *n)
{
try
{
ifin)

throw "StringOk";

® 397

Copyrighted material

3%se Object-Oriented Programming with C++

else
throw “StringError®;
!

catch{char® name)

{

cout =< name =< " ";

}
void main()
{
try
1
callFunction("test3tring”);
callFunction(1);
callFunction(0);
!
catch(int i)
1
cout <= § <2 U " »
|
catch{char *name)
1
cout =< name =< * "3
| .
}

13.3 Identify the error in the following program.

#include <iostream.h>

class Mammal
{

public:
Mammal ()

{
|

class Human
{

Copyrighted material

B
class Student
{
F
class Employee :
{
¥
void getObject()
{
throw Employee();
|
I3
void main()
{
Mammal mg
try
{
m.getObject();
}
catch(Mammal : :Human&)
{
cout << "Humam "
|
catch(Mammal : :Studentd)
{
cout == "Student ";
|
catch(Mammal : : Employesh)
{
cout == "Employee “;
)
catch({...)
{
cout =< "A11";
)
)

Exception Handling

: virtual public Human

virtual public Human

-8 399

Copyrighted material

400 @
13.4

Object-Oriented Programming with C++

[Identify errors, if any, in the following statements.

(m) catch(int a, float b)
{...}
{b) try
{throw 100;};
(e) try
[funl{)}
{d) throw a, b;
{e) wvoid divide(int a, int b) throw(x, y)

(f catch({int x, ..., float y)

(g) try
(throw x/y;:}
(hl try
{if{1x) throw x;}
catch(x)
[cout =< "x is zero \n";}

Programming Exercises

13.1
13.2
13.3
13.4

13.5
13.6

13.7

Write a program containing a possible exceplion. Use a try block to throw it and

a cateh block to handle it properly.

Write a program that illustrates the application of multiple catch statements,

Write a program which uses catehd...) handler.

Write a program that demonstrates how certain exceplion types are not allowed

to be thrown.

Write a program to demonstrate the concept of rethrowing an exception.

Write a program with the following:

{a) A function to read two double type numbers from kevboard

(b) A function fo calculate the division of these two numbers

(c) A try block to throw an exception when a wrong type of data is keved in

(d) A try block fo detect and throw an exception if the condition “divide-by-zero”
OCCUrs

(e} Appropriate catch block to handle the exceptions thrown

Write a main program that calls a deeply nested funetion containing an exception.

Incorporate necessary exception handling mechanism.

14

Introduction to the |

Standard Template Library

YYy ¥ Yy Yy Y ¥Y¥¥YV¥%

Key Concepts

sottwrare evoalution

standard templates

sStandard C++ library

Containers

:I;E'Q'-\JL'IZ'.I.I."L COontamers
Agsociative containers

Derived container:

Algorithma
Iterators

Function object

=1

I 14.1 Introduction

We have seen how templates can be used
to create generie classes and funetions that
could extend support for generic
programming. In order to help the C++
users in generic programming, Alexander
Stepanov and Meng Lee of Hewlett-
Packard developed a et of general-purpose
templatized classes (data structures) and
functions (algorithms) that could be used
as a standard approach for storing and
processing of data. The collection of these
generic classes and functions is called the
Standard Template Library (STL). The
STL has now become a part of the ANSI
standard C++ class library.

STL is large and complex and it is difficult to discuss all of its features in this chapter., We
therefore present here only the most important features that would enable the readers to
begin using the STL effectively. Using STL can save considerable time and effort, and lead
to high quality programs. All these benefits are possible because we are basically “reusing”
the well-written and well-tested components defined in the STL.

402 Ohject-Oriented Programming with C++

STL components which are now part of the Standard C++ Library are defined in the
namespace std. We must therefore use the using namespace directive

using namespace std;

to inform the compiler that we intend to use the Standard C++ Library. All programs in this
chapter use this directive,

|14.2 Components of STL

The STL contains several components. But at its core are three key components. They are:

containers,
® algerithms, and
#® iterators.

These three components work in conjunction with one another to provide support to a
variety of programming solutions. The relationship between the three components is shown
in Fig. 14.1. Algorithms employ iterators to perform operations stored in confainers.

lterator 3

Fig- 14.1 & Relationship between e three STL components

A container is an object that actually stores data. It is a way data is organized in memory.
The STL containers are implemented by template elasses and therefore can be easily
customized to hold different tvpes of data.

An algorithm is a procedure that is used to process the data contained in the containers.
The STL includes many different kinds of algorithms to provide support to tasks such as
initializing, searching, copying, sorting, and merging. Algorithms are implemented by tem
plate functions.

Introduction to the Standard Template Library 2403

An tterator i8 an objectilike a pointer) that points to an element in a container. We can
use iterators to move through the contents of containers. Iterators are handled just like
pointers. We can increment or decrement them. Iterators connect algorithms with containers
and play a key role in the manipulation of data stored in the containers.

14.3 Containers

As stated earlier, containers are objects that hold data (of same type). The STL defines ten
containers which are grouped into three categories as illustrated in Fig. 14.2. Table 14.1
gives the details of all these containers as well as header to be included to use each one of
them and the type of iterator supported by each container class.

Sequence Associative Derived
containers containers coniainers
s yacior * sit . almck
» deque » multiset . queus
list
- * map s priority_queue
o multimap

Fig. 142 & Three major categories of containers |

Table 14.1 Containers suppﬂﬂed by the STL

vector A d}fn.n.m}c ﬂ.r.rn].r Allows umemans ami
deletions at back. Permits direct access to
any element

list A bidirectional, linear list. Allows insertions <list> Bidirectional

and deletions anywhere,

deque A double-ended quewe. Allows insertions and cdsgques Random
deletions at both the ends. Permits direct ACCESS
access to any element.

set An associate container for storing unique sets. <gets Bidirectional
Allows rapid lookup. (No duplicates allowed)

{Contd)

404 @ Object-Oriented Programming with Ce+

multiset An associate container for storing non-unique <set> Bidirectional
gets, (Duplicates allowed)
Map An associate container for storing unique <map=> Bidirectional

kevivalue pairs. Each key 15 associated with
only one value {One-to-one mapping). Allows
kev-based lookup.
multimap An associate container for storing kev/value <HAps Bidirectional
pairs in which one key may be associated with
more than one value (one-to-many mappingl.

Allows key-based lookup.

stack A standad stack. Last-in-first-out{LIF D). zstecks No iterator
gueue A standard queuve. First-in-first-outiFTF0) <uenes Mo iterator
priority— A priority quene. The first element cut ‘s < JUELE Mo iterator

uee alwayvs the highest priority element.
TR | PRSI Y T T I I S S S 9 WM T TL T BET R !

Each container class defines a set of functions that can be used to manipulate its contents,
For example, a vector container defines functions for inserting e’ erments, erasing the contents,
and swapping the contents of two vectors.

Sequence Containers

Sequence containers storz elements in a linear sequence, like a4 line as shown in Fig. 14.3.
Each element is related to other elements by its position along the line. They all expand
themselves to allow insertion of elements and a!l of them suppert a number of operations on
them.

Elarment 0 ———= Elemient 1 ElEII'I"'EI'ItEJ"—'—" =+ +— Last Elemeni |' -
‘ iaralor ‘
bagin{) end(}

Fir 14.3 o= Elsments (i g goquerce conlainer J

The STL provides three types of sequence containers:

® vector
® list
® deque

Elements in all these containers can be accessed using an iterator. The difference between

the three of them i= related to only their performance. Table 14.2 compares their performance
in terms of speed of random access and insertion or deletion of elements.

Copyrighted material

Hidden page

Hidden page

Table 14.4 Contd

fill_nf }
generatel }
generate_ni)
iter_swap{)
random_shufflel)
removel)
remove_copy()
remove_copy _ifl |
remove_ifl)
replace()
replace_copy()
replace_copy_ifl)
replace_iff)
reversel)
reverse_copyl |
rotate)
rotate_copy()
swapl)
swap_ranges()
transform()
umigquel |
unique_copyl

Introduction to the Standard Template Library

Fills first n elements with a specified value

Replaces all elements with the result of an operation
Replaces first n elements with the result of an operation
Swaps elements pointed to by iterators

Places elements in random order

Deletes elements of a specified value

Copies a sequence after removing a specified value
Copies a sequence after removing elements matching a predicate
Deletes elements matching a predicate

Heplaces elements with a specified value

Copies a sequence replacing elements with a given value
Copies a sequence replacing elements matching a predicate
Replaces elements matching a predicate

Reverses the order of elements

Copies a sequence into reverse order

Rotates elements

Copies a sequence into a rotated

Swaps two elements

Swaps two sequences

Applies an operation to all elements

Deletes equal adjacent elements

Copies after removing equal adjacent elements

Table 14.5 Sorting algorithms

upper_bound()

s TR
binary_searchi | Conducts a binary search on an ordered sequence
equal_rangel() Finds a subrange of elements with a given valoe
inplace_merge!) Merges two consecutive sorted sequences
lower_bound() Finds the first occurrence of a specified value
make_heapl() Makes a heap from a sequence
mergel) Merges two sorted sequences
nth_elements) Puts a specified element in its proper place
partial_sort{) Sorts a part of a sequence
partial_sort_copyi) Sorts a part of a sequence and then copies
Partition() Places elements matching a predicate first -
_heapd) Deletes the top element
push_heapl } Adds an element to heap
sort] } Soris a sequence
sort_heap() Sorts a heap
stable_partitiond | Places elements matching a predicate first matching relative order
stable_sorti) Sorts maintaining order of equal elements

Finds the last eccurrence of a specified value

® 407

408 Object-Oriented Programming with C+4+

Table 14.6 Set algorithms

Operations Deseription

includesi) Finds whether a sequence iz a subsequence of another

set_difference(} Constructs a sequence that is the difference of two

. ordered seta

set_intersection() Constructs a sequence that contains the intersection of
ordered sets

set_symmetric_difference!) Produces a set which is the symmetric difference
between two ordered sets

get_umionl) Produces sorted union of two ordered sets

Table 14.7 Relational algorithms

Operations Deseription

equall | Finds whether two sequences are the same
lexicographical _compare() Compares alphabetically one sequence with other
max | (Fives maximuom of two values

max_element]) Finds the maximum element within a sequence

min{ } Gives minimum of two values

min_element{) Finds the minimum element within a sequence
mismatchi } Finds the first mismatch between the elements in two

BEQuUEnces

Table 14.8 Numenc algorithms

Operations Deseription

accumulatel | Aceumulates the results of operation on a sequence
adjacent_dilferencel) Produces a sequence from another sequence

inner_product{) Accumulates the results of operation on a pair of sequences

Produces a sequence by operation on a pair of sequences

partial_sum(}

[Il-i.ﬁ Iterators

Iterators behave like pointers and are used to access container elements. They are often
used to traverse from one element to another, a process known as iterating through the
container.

There are five types of iterators as deseribed in Table 14.9,
Table 14.9 [lterators and their characteristics

Tterator Aceess method Direction of movement 'O capability Remark

Input Linear Forward only Read only Cannot be saved
Chatput Linear Forward only Write only Cannot be saved
Forward Linear Forward only ReadWrite Can be saved
Bidirectional Linear Forward and backward ReadWrite Can be saved

Random HRandom Forward and backward ReadWrite Can be saved

Introduction to the Standard Template Library -2 409

Different types of iterators must be used with the different types of containers (See
Table 14.1). Note that only sequence and associative containers are traversable with iterators.

Each type of iterator is used for performing certain functions. Figure 14.4 gives the
functionality Venn diagram of the iterators. It illustrates the level of functionality provided
by different categories of iterators.

random accass

bidirectional

forward

Fig. 144 < Functionality Venn diagram of iterators I

The input and output iterators support the least functions. They can be used only to
traverse in a container. The forward iterator supports all operations of input and output
iterators and also retains its position in the container. A bidirectional iterator, while
supporting all forward iterator operations, provides the ability to move in the backward
direction in the container. A random access iterator combines the functionality of a
bidirectional iterator with an ability to jump to an arbitrary location. Table 14.10 summarizes
the operations that can be performed on each iterator type.

Table 14.10 Operations supported by iterators

Tterator Element access Read Write Increment Comparison
' operation

Input + v e="*p 4 p—_—

Chatpoet D= v -+

Forward -z v ="*p *‘p=v “+ ==, b=

Hidirectional -= v =*p p=v ++, == ==, =

Bandom access == [] v = *p D= i, - - -, ==, =, <, =,

|14.ﬁ Application of Container Classes

It is bevond the scope of this book to examine all the containers supported in the STL and
provide illustrations. Therefore, we illustrate here the use of the three most popular
containers, namely, vector, list, and map.

410 Object-Oriented Programming with C44+

Vectors

The vector is the most widely used container. It stores elements in contiguous memory
locations and enables direct access to any element using the subscript operator | |. A vector
ean change its size dynamieally and therefore allocates memory as needed at run time.

The vector container supports random access iterators, and a wide range of iterator
operations (See Table 14.10) may be applied to a vector iterator. Class veetor supports a
number of constructors for creating veetor obhjects.

vector<int> wvl; // Zero-length int vector
vector<double= v2({10); // 10-element double vector
vector<int> v3(vd); /! Creates v3 from w4
vector<int> w[5, 2); /! 5-element vector of Zs

The vector class supports several member functions as listed in Table 14.11. We can
also use all the STL algorithms on a vector.

Table 14.11 Important member functions of the vector class

. , SApLET : P Maed
atl) Gives a reference (o an element

backi) Gives a reference to the last element

bexgind) Gives a reference to the first element

capacity]) Gives the current capacity of the vector

clear) Dieletes all the elements from the vector

empty] } Determines if the vector is empty or not

endl) Gives a reference to the end of the vector

erasel) Deletes specified elements

insert() Inserts elements in the vector

pop_back() Deletes the last element

push_backi } Adds an element to the end

resized) Modifies the size of the vector to the specified value
sizel) Gives the number of elements

awapl) Exchanges elements in the specified two vectors

Program 14.1 illustrates the use of several functions of the vector class template. Note
that an iterator is used as a pointer to elements of the vector. We must include header file
=vector> to use vector class in our programs.

#include <iostream>
#include <vector> /! ¥ector header file

using namespace std;

vold display(vector=int> Bv)
Conid)

Introduction to the Standard Template Library

& 411

for{int 1=0;i<v.size();i++)
{

}

cout == "\n";

cout =< y[i] =< * ";

}

int main()
{) .
vector<int> v; /[Create o vector of type int
cout << "Initial size = " << v, size() =< "\n";
J// Putting values into the vector
int x; ’
cout =< “"Enter five integer values: ";
for(int i=0; 1<5; 1++)
{

cin »= x;

v.push_backtx);
}
cout =< "5ize after adding 5 values: ";
cout =< w.size() << "\n*;

[/ Display the contents
cout =< "Current contents: \n";
display(v);

/f Add one more value _
v.push back(6.6); // float value truncated to int

{{ Display size ond contents

cout << "\nSize = " << v .size() << "\n";
cout << "Contents now: \n";

- display(v);

// Inserting elements

vector<int> :: iterator itr = v.begin(); // iterator
itr = itr + 3; Jf itr points to 4th element
v.insert(itr,1,9);

// Display the contents
cout == "\nContents after inserting: \n";

. L N
Tl L

{Conid)

Copyrighted material

412. Object-Oriented Programming with C++

display(v);

f/ Removing 4th ond 5th elements
v.erase(v.begin()+3,v.begin()+5); // Removes 4th and 5th element

{/ Display the contents

cout =< "\nContents after deletion: \n";
display(v);

cout << "END\n":

return(0);

Prograa 14.1 J

Given below is the output of Program 14.1:
Initial size = 0

Enter five integer values: 12 34 5
Size after adding 5 values: 5
Current contents:

1 2 3 4 5§

Bize = B
Contents now:
1 2 3 4 5 &

Contents after inserting:
1 2 3 9 4 5 6

Contents after deletion:
1 2 3 5 6
EMD

The program uses a number of functions to create and manipulate a vector. The member
function sizel() gives the current size of the vector. After ereating an int type empty vector
v of zero size, the program puts five values into the veetor using the member function
push_back(). Note that push_back() takes a value as its argument and adds it to the back
end of the vector. Since the vector v is of type int, it can accept only integer values and
therefore the statement

v.push_back(6.6);

truncates the values 6.6 to 6 and then puts it into the vector at its back end.

Introduction to the Standard Template Library 2413

The program uses an iterator to access the vector elements. The statement
vector<int= :: iterator itr = v.begin();

declares an itera tor itr and makes it to point to the first position of the vector. The statements

itr = itr + 3;
v.insert(itr,9);

ingerts the value 9 as the fourth element. Similarly, the statement
v.grase(v.begin()+3, v.begin{)+5);

el ter 4™ and 5™ elements from the vector. Note that eraseim,n) deletes only n-m elements
sta ting frem ©0™ element and the n™ element is not deleted.

The elements of a vector may also be accessed using subscripts (as we do in arrays).
bedee the use of vi] in the function display() for displaying the contents of v. The call
v.cized) in the for loop of display() gives the current size of v,

Lisits

The list is another container that is popularly used. It supports a bidirectional, linear list
and provides an efficient implementation for deletion and insertion operations. Unlike a
v rtor, which supports random access, a list can be accessed sequentially only.

Bidirectional iterators are used for accessing list elements. Any algorithm that requires
ir. put, output, forward, or bidirectional iterators can operate on a list. Class list provides
rcany member functions for manipulating the elements of a list, Important member functions
o' th= list class are given in Table 14.12. Use of some of these functions is illustrated in
Frogram 14.2. Header file <list> must be included to use the container class list.

, USING LISTS

Pincluda =1 pst reams
ginclude <list=
#include <cstdlib> // For using rand() function

using namespace std;
void display(list=int= &l1st}
{

list=int> :: iterator p;

Copyrighted material

Hidden page

Introduction to the Standard Template Library o415

Output of the Program 14.2 would be:

Listl
0, 184, 63,

List2
265, 191, 157, 114, 293,

Wow Listl
1m| u- 1“- Hl zml

Now List2
191, 157, 114, 293,

Merged unsorted 1ists
100, 0, 184, 63, 191, 157, 114, 200, 293,

Merged sorted lists
0, 63, 100, 114, 157, 1B4, 191, 200, 293,

Reversed merged 1ist
293, 200, 191, 184, 157, 114, 100, 63, 0O,

The program declares two empty lists, listl with zero length and list2 of size 5. The listl

ig filled with three values using the member function push_back() and math function
rand(). The list2 is filled using a list type iterator p and a for loop. Remember that

Copyrighted material -

416@ Object-Oriented Programming with Ce+

list2.begin() gives the position of the first element while list2.end() gives the position
immediately after the last element. Values are inserted at both the ends using push_front()

and push_back() functions. The function pop_front() removes the first element in the
list. Similarly, we may use pop_back() to remove the last element.

The objects of list can be initialized with other list objects like

listA = listl;
listB = listZ;

The statement
listl.merge(list2);
simply adds the list2 elements to the end of listl. The elements in a list may be sorted in
increasing order using sort() member function. Note that when two sorted lists are merged,
the elements are inserted in appropriate locations and therefore the merged list is also a
sorted one.

We usze a display() function to dizplay the contents of various lists, Note the difference
between the implementations of display() in Program 14,1 and Program 14.2,

Table 14.12 [mportant member finctions of the list class

Function Task
back() Gives reference to the last element
begint) Gives reference to the first element
clear() Deletes all the elements
empty(| Decides if the list is empty or not
endl Gives reference to the end of the list
erasel) Deletes elements as specified
inserti } Inserts elements as specified
mergel) Merges two ordered lists
pop_back(§ Deletes the last element
pop_frontl) Deletes the first element
push_back() Adds an element to the end
push_front(} Adds an element to the front
removel) Removes elements as specified
resizel | Modifies the size of the hst
reversel | Reverses the list
sized | Gives the size of the list
sortl) Sorts the list
aplical) Inserts a list into the invoking list
swapl) Exchanges the elements of a list with those in the invoking list
unigue{ Deletes the duplicating elements in the list

Introduction to the Standard Template Library 417

Maps

A map is a sequence of (key, value) pairs where a single value is associated with each
unique key as shown in Fig. 14.5. Retrieval of values is based on the key and is very fast.
We should specify the key to obtain the associated value.

L]

Fig. 145 & The key-value pairs in a map |

A map is commonly called an associative array. The key is specified using the subseript
operator | | as shown below:

phone["John® 1 = 1111;

This creates an entry for "John" and associates(i.e. assigns) the value 1111 to it. phone is
a map object. We can change the value, if necessary, as follows:

phone["John®] = 9999;

This changes the value 1111 to 9999, We can also insert and delete pairs anywhere in
the map using insert() and erase() functions. Important member functions of the map
class are listed in Table 14.13.

Table 14.13 Important member functions of the map class

begini } Gives reference to the first element

clear|) Deletes all elements from the map

emptyl Decides whether the map is empty or not

end{) Gives a reference to the end of the map

erase|) Deletes the specified elements

find(} Gives the location of the specified element

insert]) Inserts elements as specified

sizel) Giives the size of the map

swapl | Exchanges the elements of the given map with those of the

invoking map

Program 14.13 shows a simple example of 8 map used as an associative array. Note that
=map> header must be included.

Hidden page

Hidden page

420 Object-Oriented Programming with C++

Function objects are often used as arguments to certain containers and algorithms. For
example, the statement

sort{array, array+5, greater<int=());

uses the function object greater<int>() to sort the elements contained in array in
descending order.

Besides comparisons, STL provides many other predefined function objects for performing
arithmetical and logical operations as shown in Table 14.14. Note that there are function

objects corresponding to all the major C++ operators. For using function objects, we must
include <functional> header file.

Table 14.14 STL function objects in <functional=

divides<T> arithmetic xly
equal_to<T> relational K==y
greater<Tx> relational X>¥
greater_equal<T> relational XKr=y
lesa<T> relational X<y
less_equal<T> relational Xe=¥
logical_and<T> logical x &&y
logical_not<T> logical x
logical_or<T> logical x||¥
minus<T> arithmetic X-¥
moedulus<T> arithmetic X%y
negate<T= arithmetic -X
not_equal_to<T= relational xl=y
plus<T=> arithmetic X+¥
multiplies<T=> arithmetic

Note: The variables x and y represent objects of class T passed to the function object as
arguments.

Program 14.4 illustrates the use of the function ohject greater<>() in sort() algorithm.

USE OF FUNCTION OBJECTS IN ALGORITHMS

finclude <iostream>
#include =algorithm=
#include =functional=
using namespdce std;
;nt main()

int x[] = {10,50,30,40,20};

int y[J = {70,90,60,80};
FConitd)

Copyrighted material

Introduction to the Standard Template Library 421

sort(x,x+5,greater<int=());

sort{y,y+4);
for(int i=0; i<5; i++)
cout << x[i] =< " "

cout =< "\n";
for{int j=0; j<4; j++)

cout <= ,}r[.]] e W W,
cout =< "\n";
int z[%];
merge(x,x+5,y,y+d,2);
for{i=0; i<9; i++)

cout << z[i] == }
cout =< "\n";
retern(0);

Program 14.4

Qutput of Program 14.4:

50 40 30 20 10

60 70 80 90
50 40 30 20 10 60 70 80 90

nole

The program creates two arrays X and ¥ and initializes them with specified values. The
program then sorts both of them using the algorithm sort(). Note that x is sorted
using the function object greater<int>() and ¥ is sorted without it and therefore the
elements in x are in descending order.

The program finally merges both the arrays and displays the content of the merged array.
Note the form of merge() function and the results it produces.

\ SUMMARY . -

v A collection of generic classes and functions i called the Standard Template
Library (STL). STL components are part of C++ standard library.

¢ The S8TL consists of three main components: containers, algorithms, and
iterators.

t» Containers are objects that hold data of same type. Containers are divided into
three major categories: sequential, associative, and derived.

Hidden page

Introduction to the Standard Template Library 2423

¥ sorting algorithms > templatized classes
> stack » tree

» standard C++ library » using namespace
» standard template library » values

» templates » vector

I Review Questions

14.1

14.2
14.3

14.4
14.5
14.6
14.7

14.8
14.9

14.10
14.11

14.12

What is STL? How is it different from the Cs++ Standard Library? Why is it
gaining importance among the programmers?
List the three types of containers.

What is the major difference between a sequence container and an associative
container?

What are the best situations for the use of the sequence containers?
What are the best situations for the use of the associative containers?
What is an iterator? What are its characteristics?

What is an algorithm? How STL algorithms are different from the conventional
algorithmas?

How are the STL algorithms implemented?

Distinguish befween the following:

(a) lists and vectors

(b) sets and maps

(c) maps and multimaps

(d) gueue and deque

(e) arravs and vectors

Compare the performance characteristics of the three sequence containers.
Suggest appropriate containers for the following applications:

(a) Insertion at the back of a container.

(h) Freguent insertions and deletion at both the ends of a container.

(e) Frequent insertions and deletions in the middle of a container.

{d) Freguent random access of elements.

State whether the following statements are true or false.

(a) An iterator is a generalized form of pointer.

ib) One purpose of an iterator is to connect algorithms to containers.

(e) STL algorithms are member functions of containers.

(d) The size of a vector does not change when its elements are removed.
(e} STL algorithms can be used with c-like arrays.

(f) An iterator can always move forward or backward through a container.

Copyrighted material

424 @ Object-Oriented Programming with C++

(g) The member function end() returns a reference to the last element in the
container.
{h) The member function back() removes the element at the back of the container,
(i) The sori() algorithm requires a random-access iterator.
(j) A map can have two or more elements with the same key value.

'ﬂe&uggmg Exercises

14.1 Identify the errror in the following program.

#include <iostream.h=
#include =vector=

#define NAMESIZE 40
using namespace std;

class EmployeeMaster

private:
char name[MAMESIZE];
int id;

public:

EmployeeMaster()
{

strcpy(name, ""):
id = 0;
}

EmployeeMaster{char name[NAMESIZE], int id)
id{id)
{

|

EmployeeMaster™ getValuesFromUser()

strepy(this-=name, name);

EmployesMaster *temp = new EmployesMaster();
cout << endl << "Enter user name : ";
cin == iemp=>name;

cout =< endl =< "Enter user ID : “;
cin >> temp->id;

return temp;:

Introduction to the Standard Template Library 9425

void displayRecord()
{

cout << endl << "Mame : * << name;
cout =< endl =< "I : " =< id =< end];

4

void main()

{
vector <EmployeeMaster®> emp;
EmployeeMaster *temp = new EmployeeMaster();
emp.push_back{getValuesFromlser(});
emp [0] ->displayRecord();
delete temp;

temp = new EmployeeMaster(*AlanKay®, 3);
emp.push_back(temp);
emp[emp.capacity()]->displayRecord();
emp[emp.5size()] ->displayRecord();
)
14.2 Identify the error in the following program.

#include <iostream=
#include =vectore

using namespace std;

int main()

{
vector <int> vl;
v1.push_back(10);
v1.push_back(30);

vector <int> v2;
vZ.push_back(20);
vZ.push back(40);

if{vl==v2)
cout=<"vectors are egual”;
else
cout<<"vectors are unequal\t";
vl.swap(20);
for(int y=0; yevl.size(); y++)

Copyrighted material

.

426 @

14.3

Object-Oriented Programming with C++

cout=s"¥1="=<y] [}-] ot W .
cout=s"Y2="=ey? [_l'l] et :

}

return 0;

)
Identify the error in the following program.

#include<iostream>
#include=list=

void main()

{
list =int= 11;

11.push front(10);
11.push back(20);
11.push_front(30);
11.push_front (40);
11.push_back(10);
11.pop_front (40);

1l.reverse();
11.unique();

Programming Exercises

14.1

14.2
14.3

14.4

Write a code segment that does the following:

ia) Defines a vector v with a maximum size of 10

(h) Sets the first element of v to 0

ic) Setfs the last elementf of v fo 9

(d) Sets the other elements to 1

{e) IDisplays the contents of v

Write a program using the find() algorithm to locate the position of a specified
value in a sequence confainer.

Write a program using the algorithm ecounit() to count how many elements in a
confainer have a specified value,

Create an array with even numbers and a list with odd numbers. Merge two
sequences of numbers into a vector using the algorithm merge(). Display the
vector,

Introduction to the Standard Template Library 0427

14.5

14.6
14.7

14.8

Create a student class that includes a student’s first name and his
roll_number. Create five objects of this class and store them in a list thus creating
a phone_lii. Write a program using this list to display the siudent name if the
roll_number iz given and vice-versa.

Redo the Exercise 14.17 using a set.

A table gives a list of car models and the number of units sold in each fype in a
specified period. Write a program to store this table in a suitable container, and
to display interactively the total value of a particular model sold, given the unit-
cost of that model.

Write a program that accepts a shopping list of five items from the keyboard and
stores them in a vector. Extend the program to accomplish the following:

(a) To delete a specified item in the list

(h) To add an item at a specified location

ic) To add an item at the end

(d) To print the contents of the vector

Copyrighted material

—

Y YYYY¥YVY¥YV¥YY

15

| Manipulating Strings |

Key Concepts

C-strings

The string class

Creating string objects
Manipulating strings
Relational operations on stnngs
Comparing strings

String characteristics

Swapping strings

15.1 Introduction

A string is a sequence of characters. We
know that C++ does not support a built-in
string type. We have used earlier null-
terminated character arrays to store and
manipulate strings. These strings are called
C-strings or C-stvle strings. Operations on
C-strings often become complex and
inefficient. We can also define our own
string classes with appropriate member
functions to manipulate strings. This was
illustrated in Program 7.4 (Mathematical
Operation of Strings).

ANSI standard C++ now provides a new
class called string. This class improves on
the conventional C-strings in several ways.

In many situations, the string objects may be used like any other built-in type data. Further,
although it is not considered as a part of the STL, string is treated as another container
class by C++ and therefore all the algorithms that are applicable for containers can be used
with the string objects. For using the string class, we must include <string= in our program.

The string class is very large and includes many constructors, member functions and
operators. We may use the constructors, member functions and operators to achieve the
following:

Manipulating Strings -8429

Creating string objects

Reading string objects from keyboard
Displaying string objects to the screen
Finding a substring from a string
Modifying string ohjects

Comparing string objects

Adding string objects .
Accessing characters in a string
Obtaining the size of strings

And many other operations

L E RN N R X N ¥ ¥

Table 15.1 gives prototypes of three most commonly used constructors and Table 15.2
gives a list of important member functions. Table 15.3 lists a number of operators that can
be used on string objects,

Table 15.1 Commaonly used string constructors

. Constructor MR G S A
Eh'iﬁ.gt]: For creating an empty string -
String{const chat “str); For creating a string object from a null-terminated string
Stringlconst string & str; For creating a string object from other string object

Table 15.2 Important functions supported by the string class

© Funclion Task

- append!) Appends a part of string to another string
Assign() Asaignsa a partial string
at() Obtains the character stored at a specified location
Begini} Returns a reference to the start of a string
capacity) Gives the total elements that can be stored.
comparel) Compares string against the invoking string
emptyi) Returns true if the string is empty; Otherwise returns false
end() Returns a reference to the end of a string
erasel) Removes characters as specified
fime() Searches for the occurrence of a specified substring
inserti) Inserts characters at a specified location
lengtht) Gives the number of elements in a string
max sizel) Gives the maximum possible size of a string object in a give system
rep-].e-u:e{] Replace specified characters with a given string
resize]) Changes the size of the string as specified
sizel) Gives the number of characters in the string
swapl) Swaps the given string with the invoking string

430

Table 15.3 Operators for string objects

Object-Oriented Programming wwith O+

Meaning

Assignment
Concatenation

Concatenation assignment

+ Equality
Imequality
Less than
Less than or equal
Greater than

Greater than or equal

Subseription
Cutput
Imput

|15.2 Creating (string) Objects

We can create string objectz in a number of ways as illustrated below:

string sl;

string s2("xyz");
51 = 523

53 = "abc" + 52
cin == 51;

getline{cin, sl);

/[Using constructor with no argument

[/ Ustng one-argument constructor

Jf Assigning string objects
/[Concaotenating strings

// Reading through keyboord (one word)
/{ Reading through keyboord o line of text

The overloaded + operator concatenates two string objects. We can also use the operator
+= to append a string to the end of a string. Examples:

53 += sl;
53 += "abc®;

ff 53 = 53 + 5]
ff 83 = 53 % "gbhc"

The operators << and >> are overloaded to handle input and output of string ohjects.

Examples:

cim >> 52;
cout == 52;
getline(cin, s2);

Jf Imput to string ohject (one word)

[/ Displays the contents of 52
/{ Reods embedded blanks

F2OE

Using cin and >> operator we can read only one word of a string while the getline()
function permits us to read a line of text containing embedded blanks.

Program 15.1 demonstrates the several ways of creating string objects in a program.

Copyrighted material

—8 431

Manipulating Sirings

CREATING STRING OBJECTS

#include <iostream> ' e : i
#include <string> : :

using namespace std;

P

int main() LR L SRR A U :".-"-"J."”'
{ i .4.:: aTi A A S T SR I T E Tt T
/[Creating string objects - .. '3 ii5]
string s1; . h hﬂ::ﬂﬁmm
string s2(" New"); Il t.l'ﬂm*#fr_il_'lg l:mst_ﬂnt'j
string s3(" Delhi"); e _
/] Assigning volue to string objects B e BN "i-_ A
51 = 52; e /i Using -altr‘iﬂg ﬂ-lfi'ﬂ"! :
cout =< "§] = " << g] < "\n"; 2
// Using o string constant
s1 = "Standard C++";
cout << "Mow 51 = "' << gl << "\pn":
// Using another object : Ltk b o
string sd4(sl); . i '
cout <= "S4 = " << g4 <= "\p\p"; - yp
[/ Reoding through keyboord
cout =< "ENTER A STRING \n"; ¥
cin >> sd; o mmuﬂ ﬂy blank spﬁet
cout << "Now S4 = " << g4 e< "h.n‘h.n'
| // Concotenating strings _ o
sl = 52 + 53; g
cout << “51 finally cunta‘lns* " ee g] =< "l.n"-' :
t :, i ;1-' -.,."'.I.'h.-:l,.l'l.l. '-l. .-.'-..- 5_. = -1. o -'...' '
} return -0 ik 5 l't‘-‘ﬂ? ﬁ_ﬂ,:,x:-ﬂ‘ ;f Pt

1 L : .

The output of Program 15.1 would be:

51 = New
Wow 51 = Standard Cée+
54 = Standard C++

432«

ENTER A STRING
COMPUTER CENTRE
Now 54 = COMPUTER

51 finally contains: MNew Delhi

I 15.3 Manipulating String Objects

We can modify contents of string objects in several ways, using the member functions such

as insert(), replace(), erase(), and append(). Program 15.2 demonstrates the use of some
of these functions.

MODIFYING STRING OBJECTS

#include =iostream
#include =string=

using namespace std;

int main{)

i

string s1("12345"};
string s2("abcde®);

cout =< "Qriginal Strings are: \n";
cout == "51:; " =< 5] == "\p";

cout == "52: " =< §F =< "\p\n":

f Inserting o string inte onother

cout == “Place 52 inside §1 yn";
sl.insert{4,s52});

cout << "Modified 51: " <= sl << "\n\n";

/| Removing chorecters in o string

cout << "Remove 5 Characters from 51 “n";
sl.erase(4,5);
cout =< "Now 51:

o §] € '\nxn";

/{ Replacing choracters in o string
cout =< "Replace Middle 3 Characters in 52 with 51 \n"

Ohject-Oriented Programming with Cv+

(Contd)

Copyrighted material

Hidden page

434 Dbpect-Onented Programmeng with C++

int main()

{
string s1{"ABC");
string sZ2{"XYZ"):
string sd = 31 + 53

if(sl 1= 52)

cout =< "sl is not equal to s2 \n";
if{s1 > 52)

cout =< “s] greadtér thap 52 Wn%;
else

cout es "2 greater than 51 kn";
if{s3 == 51 + s2)

cout == "3 {5 equdl to sl+s2-\nin":
int % = sl.compare(s?);:
if(x == 0)

cout ==
glse if(x > 0)

cout <= "s] = 52 \n";

1 ==52 \n";

elsa Sl =<0

cout << "s] <52 \n":

return O0;

PROGRAM 15.3

Program 15.3 shows how these operators are used.
This program produces the following output:

gl is not equal to s2

52 greater than sl

53 is egual to sl+s2

51 < 52

Il!’-.S String Characteristics

Clazs string supports many functions that could be used to obtain the characteristics of
strings such as size, length, capacity, etc. The size or length denotes the number of elements

Manipulating Strings 2435

currently stored in a given string. The capacity indicates the total elements that can be
stored in the given string. Another characteristic is the maximum size which is the largest
possible size of a string object that the given system can support. Program 15.4 illustrates
how these characteristics are obtained and used in an application.

DBTAINING STRING CHARACTERISTICS

#include <iostream=
#include =string>

using namespace std;

void display(string Astr)

{
cout =< "Size = " << str.size() =< "\n";
cout =< “"Length = * << str.length() << "\n";
cout << "Capacity = " << str.capacity() =< "\n";
cout << "Maximum Size = " << str.max_size() << "\n";
cout << "Empty: " << (str.empty() ? "yes" : "no"):
cout =< "\n\n";

} 1 - i
int main() N
string strl;

cout << "Initial status: \n®; toh ;
display(strl); : - S

cout << "Enter a string (one word) \n*:
cin == strl;

cout =< "Status now: \n“;
display(strl);

strl.resize(15);

cout =< "Status after resizing: \n"; .
display(strl);

cout =< *\n";

return 0;

PROGRAM 15.4

Shown below is the output of Program 15.4:

Initial status:
Size = 0

Hidden page

*Eﬁﬁni[iiﬁﬁnm’!m
ONE TWO THREE FOUR

THO is found at: 4
T is found first at: 4
R is last fount at: 17

o and print substring T

Copyrighted material

438» Object-Oriented Programming with C++

We can access individual characters in a string using either the member function at() or
the subscript operator [|. This is illustrated by the following statements:

cout =< s.at(i);
cout << s[i];

The statement
int x1 = s.find("TWO");
locates the position of the first character of the substring "T'WO0". The statement
cout =< s,substr(xl,3);

finds the substring "TWO", The first argument x1 specifies the lecation of the first character
of the required substring and the second argument gives the length of the substring.

Ili.‘! Comparing and Swapping

The string supports functions for comparing and swapping strings. The compare() function
can be used to compare either two strings or portions of two strings. The swap() function
can be used for swapping the contents of two string objects. The capabilities of these functions
are demonstrated in Program 15.6.

COMPARING AND SWAPPING STRINGS

#include <iostream
#include =string>

using namespace std;

int main{)

{
string s1{"Road”);
string s2(“Read®);
string s3("Red");
cout <= "s] = " =< 5] <= "\p";
cout =< "52 = " =< 57 << "\p";
cout =< "53 = " =< 53 =< "\p";

int x = sl.compare(s?);
if(x == 0)

(Conid)

Manipulating Strings 2439

cout <= "s] == 52" <= "\p";
else if(x = 0)

cout =< "sl > 52" << "\p";
elze

cout =< "s] = 52" =< "\n";

int a = sl.compare(0,2,52,0,2);
1nt b = 52+Eﬂﬂ“{ﬂl2|5110|2]i
int ¢ = s2.compare(0,2,53,0,2);
int d = s2.compare(s2.sfze()-1,1,53,53.5ize()-1,1);

cout =< "g = " =< g =< "'I,.h' 2 "h = ¥ 22 b == "\p¥;
cout =< "¢ = " e ¢ 2 "\p" =e g = " 2« g << "yp";

cout << "\nBefore swap: \n";
cout =< "gl = * =< g] <= "\p";
cout << "s2 = " << 52 << "\n";
sl.swap(s2);

cout << "\nAfter swap: \n";
cout << "sl = " << 5] << "\p";
cout << "s2 = " << 52 << "\n";

return 0;

}
PROGRAM 15.6
The output of Program 15.6:

51 = Road
52 = Read
£3 = Red
£] = g2
a m
b = -1
c =10
d=10
Before swap:
51 = Road
g2 = Read

After swap:
51 = Read
52 = Road

Copyrighted material

[

440@ Object-Oriented Programming with C++

The statement
int x = sl.compare(s2);

compares the string sl against 82 and x is assigned 0 if the strings are equal, a positive
number if sl is lexicographically greater than s2 or a negative number otherwise.

The statement
int a = sl.compare(0,2,52,0,2);

compares portions of 81 and s2. The first two argumentz give the starting subscript and
length of the portion of 81 to compare to s2, that is supplied as the third argument. The
fourth and fifth arguments specify the starting subscript and length of the portion of s2 to be
compared. The value assigned to a is 0, if they are equal, 1 if substring of 81 is greater than
the substring of 82, -1 otherwise.

The statement
s2.swap(s2);

exchanges the contents of the strings s1 and s2.

\ SUMMARY I'/,,

4+ Manipulation and use of C-style strings become complex and inefficient. ANSI C++ provides
a new class called string to overcome the deficiencies of C-strings.

&> The string class supports many constructors, member functions and operators for creating
and manipulating string objects. We can perform the following operations on the strings:

Reading strings from kevboard

Assigning strings to one another

Finding substrings

Modifying strings

Comparing strings and substrings

Accessing characters in strings)

Obtaining size and capacity of strings

Swapping strings

Sorting strings

<string>
append()

assigni)

at()

begin(}
capacity
capacity()
comparel()
comparing strings
C-strings
C-style strings
emptyl()

end()

erasel()

find()
find_first_of()
find_last_of()
getline()

Y Y Y Y Y Y Y YV YYYYYYYYY

I Review Questions

Manipulating Strings

* 441

Key Terms

Y Y Y Y Y Y Y Y Y Y Y Y Y YYYYY

insert()

length

lengthi()
lexicographical
max_size()
maximum size
relational operators
replace()

size

sizel)

string

string class

string constructors
string objects
substr()

gsubstring

swapl()

SWApPpPINg strings

15.1 State whether the following statements are TRUE or FALSE:
{a) For using string class, we must include the header <string>.

{b) string objects are null terminated.

(¢} The elements of a string object are numbered from 0.
(d) Cbjects of string class can be copied using the assignment operator.
(e) Function end() returns an iterator to the invoking string object.

15.2 How does a string type string differ from a C-type string?
15.3 The following statements are available to read strings from the keyvboard.

(a) cin »> sl;

(b} getline{cin, sl);)
where 81 is a string object. Distinguish their behaviour.

442e

15.4

15.5

15.6

15.7

Object-Orfented Programming with O+

Consider the following segment of a program.
string s1({"man"), s2, 53;
s?.assign(sl);

53 = 51;

string s4("wo" + s1);
52 += "age";
s3.append("ager®):
si[0] = "v';

State the contents of the objecis 81, 82, 83 and sd when executed.

We can access string elements using

(a) a#f) function

(b) subscript operator []

Compare their behaviour,

What does each of the following statements do?

(a) s.reploce(n,1,"f");

(b) s.erase(10);

(¢} sl.insert(10,52);

(d) int x = sl.compare{0, s2.size(), 52);

(e) s = sl.substr(10, 5);

Diztinguish between the following pair of functions.

(a) maeax_size() and capacity()

ib) find() and rfind()

el begin() and rbegini)

Iﬂebuggiugﬂmrcﬁes

15.1

15.2

Identify the error in the following program.

#include =iostream.h=
#include <string=

using namespace std;

void main()
{
string stri(“ghi");
string strZ("abc" + “def");
str2+=strl;
cout << str2.c str();

Identify the error in the following program.

#include =iostream.h=

15.3

Manipulating Strings

Finclude =string=>

using namespace std;

void main()

{
string strl("ABCDEF");
string str2("123");
string str3;

strl.insert{2, str2);
strl.erase(2,2);
strl.replace(2,s5tr2);

cout =< strl.c_str(};
cout =< endl;
!
Identify the error in the following program.

#ginclude <iostream=
#include <string=>

using namespace std;

class Product
{
int iProductNumber;
string strProductName;
public:
Product()
{
}

Product(const int &number, const string &name)

|
setProductNumber(number) ;

setProductName(name) ;

|

void setProductNumber(int n)

{
iProductNumber = nj;

443

Copyrighted material

444 e

Object-Ortented Programming with O+
}

void setProductName(const string str)

1

strProductName = str;

int getProductMumber()
i

return iProductNumber:
i

const string getProductName()

return strProductName

Productd operator = (Product &source)

{
setProductNumber(source. iProducthumber) ;
string strTemp = sfource.strProductlame;

setProductMame(strTemp);
return *this;

1
void display()
{
cout << "ProductName : " =< getProductName();
cout =< " " ;
cout =< "ProductNumber : " =< getProductNumber();
cout << endl;
l
1
void main()

{

Product pl(l, 5);
Product p2(3, "Dates®);
Product p3;

p3 = pZ = pl;

Manipulating Strings #445

p3.display();
p2.display();
}

15.4 Find errors, if any, in the following segment of code.

int len = s1. length();
for {int 1=0; l<len;++i)
cout =< s).at[];

I Programming Exercises

15.1

15.2

15.3

15.4

15.5

15.6

15.7

15.8

15.9

Wrife a program that reads the name
Martin Luther King

from the keyboard info three separate string objects and then concatenates them
into a new string ohject using

(a) + operator and

(b) append() function.

Write a program using an iterator and while() construet to display the contents
of a string object.

Write a program that reads several city names from the keyboard and displays
only those names beginning with characters "B" or "C".

Write a program that will read a line of text containing more than three words
and then replace all the blank spaces with an underscore(_).

Write a program that counts the number of occurrences of a particular character,
say 'e’, in a line of text.

Write a program that reads the following text and counts the number of times
the word "It" appears in it.

It is new, It is singular.
It 15 simple. It must succeed!

Modify the program in Exercise 15.14 to count the number of words which start
with the character 's',

Write & program that reads a list of countries in random order and displays
them in alphabetical order, Use comparison operators and functions.

 (fiven a string

string s("123456789");
Write a program that displays the following:
1
232
34543

4567654
b67888765

Y Y Y Y Y Y Y Y YYYYY

New Features of ANSI C++
Standard

Key Concepts

.
Boolean type data
Wide-character literals
Constant casting

Static casting

Dvnamic casting
Reinterpret casting
Runtime type information
Explicit constructors
Mutable member data
MNamespaces

Nesting of namespaces
Operator keywords

Using new keywords

MNew style for headers

I 16.1 Introduction

The IS0/ ANSI C++ Standard adds several
new features to the original C4+4+
specifications, Some are added to provide
better control in certain situations and
others are added for providing conveniences
to C++ programmers.
important to note that it is technically
possible to write full-fledged programs
without using any of the new features.

Important features added are:

1.

New data types

® hool

® wchar_t

New operators

® const_cast
static_cast
dynamic_cast
reinterpret_cast
typeid

Class implementation
& Explicit constructors
s Mutable members
Namespace scope

It 15 therefore

New Features of ANSI C++ Standard @447

5. Operator keywords
6. New kevwords
7. New headers

We present here a brief overview of these features.

I 16.2 New Data Types

The ANSI C++ has added two new data types to enhance the range of data types available
in C++. They are bool and wechar t.

The bool Data Type

The data type bool has been added to hold a Boolean value, true or false. The values true
and false have been added as keywords to the C++ language. The bool type variables can
be declared as follows.

bool bl; /[declare bl as bool type
bl = true; /[ossign true value to it
bool b2 = false; J[declare and initialize

The default numeric value of true is 1 and false is 0. Therefore, the statements

cout =< "pl = " =< bl; J/ bl is true
cout =< "h2 = " == hZ; [/ b2 is false

will display the following output:

bl = 1
b2 = 0

We can use the bool type variables or the values true and false in mathematical
expressions. For instance,

int x = false + 5*m - bl;

ig valid and the expression on the right evaluatez to 9 assuming bl is true and m is 2,
Values of type bool are automatically elevated to integers when used in non-Boolean
EXPIressions.

It is possible to convert implicitly the data types pointers, integers or floating point values
to bool type. For example, the statements

448 @ Object-Oriented Programming with C++
bool x = 0;
bool y = 100;
bool z = 15.75;

assign false to x and true to y and =z
Program 16.1 demonstrates the features of bool type data.

USE OF bool TYPE DATA

#include <iostream>

using namespace std:

int main()
|
int xI = 10,xZ = 20,m = 2;
bool bl, bZ:
bl = x1 == xZ; !/ Folse
b2 = x1 < x2: 1 True

cout << "bl 15 " =< bl =< "\n";
cout << "hZ f3 " == b2 << "\n";

bool b3 = true;
cout <= "h3 {5 " =< B3 == "\pn";

if(b3)

cout =< "Very Good" << "\n";
else

cout =< "Yery Bad® <= "\n";

int x3 = false + 5*m-b3;

bl = x%3;

bz = 0

cout << "x3 = " << x3 << "\n";

cout =< "Now Bl = " =< pb) << " and b2 = * << b2 << "\n";

reaturn 0;

PROGRAM 16.1

The output of Program 16.1 would be:

bl 150
b2 1z 1

New Features of ANSI C++ Standard €449

b3 is 1

Very Good

¥3 =0

Now bl = § and b2 =

The wchar_t Data Type

The character type wehar_t has been defined in ANSI C++ to hold 16-bit wide characters,
The 16-bit characters are used to represent the character sets of languages that have more
than 255 characters, such as Japanese. This is important if we are writing programs for
international distribution.

ANSI C++ al=o introduces a new character literal known as wide_character literal which
uses two bytes of memory, Wide_character literals begin with the letter L, as follows:

L'uy’ /{ wide_character literal

|16.3 New Operators

We have used east operators (also known as casts or type casts) earlier in a number of
programs. A= we know, casts are used to convert a value from one type to another. This is
necessary in situations where automatic conversions are not possible. We have used the
following forms of casting: -

double x = double(m); ff C++ type casting
double ¥ = (doublen; i C-type casting

Although these casts still work, ANSI C++ has added several new cast operators known
as static casts, dynamic easts, reinterpret casts and constant ecasts. It also adds another
operator known as typeid to verify the types of unknown ohjects.

The static_cast Operator

Like the conventional cast operators, the static_cast operator is used for any standard
conversion of data types. It can also be used to cast a base class pointer into a derived class
pointer. Its general form is:

static_cast<type>(object)

Here, type specifies the target type of the cast, and object iz the object being cast into the
new type. Examples:

int m= 10z

double x = static_cast<double> (m);
char ch = static cast<char> (m};

Copyrighted material

Hidden page

New Features of ANSI C++ Standard @ 451

The type must be a pointer or a reference to a defined class type. The argument object
must be expression that resolves to a pointer or reference. The use of the operator
dynamic_cast() is also called a fype-safe downcast.

The typeid Operator

We can use the typeid operator to obtain the types of unknown objects, such as their class
name at runtime. For example, the statement

char *onjectType = typeid{object).name():

will assign the type of "object" to the character array objectType which can be printed out,
if necessary. To do this, it uses the name() member funetion of the type_info class, The
object may be of type int, float, ete. or of any class.

We must include <typeinfo> header file to use the operators dynamic_cast and typeid
which provide run-time type information (RTTT).

Ilﬁ.-i- Class Implementation

ANSI C++ Standard adds two unusual keywords, explieit and mutable, for use with class
members.

The explicit Keyword

The explicit keyword is used to declare class constructors to be "explicit” constructors. We
have seen earlier, while discussing constructors, that any constructor called with one
argument performs implicit conversion in which the type received by the constructor is
converted to an object of the class in which the constructor is defined. Since the conversion
is automatic, we need not apply any casting. In case, we do not want such automatic
conversion to take place, we may do so by declaring the one-argument constructor as explicit
as shown below:

class ABC

[
int m;

public:
explicit ABC (int i) [/ constructor
{
m=1;

I
F B

Copyrighted material

452@ Object-Oriented Programming with C++

Here, ohjectz of ABC class can be created using onlv the following form:
ABC abcl(100);

The automatic conversion form
ABC abcl = 100:

is not allowed and illegal. Remember, this form is permitted when the keyword explicit is
not applied to the conversion.

The mutable Keyword

We know that a class object or a member function may be declared as const thus making
their member data not modifiable. However, a situation may arise where we want to create

a const object (or function) but we would like to modify a particular data item only. In such
situations we can make that particular data item modifiable by declaring the item as mutable.
Example:

mutable int m;

Although a function{or class) that contains m is declared const, the value of m may be
modified. Program 16.2 demonstrates the use of a mutable member.

#include =iostream=
using namespace std;

class BBLC
{
private:
mutable int m; /) sutoble member
public:
explicit ABC{int x = 0)
{
m o= X;
I
void change() const [/ const function

}
int display() const [f const function
|

}

m = m+li;

return mg

(Coandd)

New Features of ANSI C++ Standard 9 453

int-main()

{
const ABC abe(100): /{ const ohject
cout << "abc contains: " << abc.display();

abc.change(): /[chonges mutoble data
cout == "\nabc now contains: " =< abc.display();

cout =< "\n";:

return O;

PROGRAM 16.2

The output of Program 16.2 would be:

abc comtaims: 100
abc now containms: 110 .

rtote

Although the function change() has been declared constant, the value of m has been
modified. Try to execute the program after deleting the keyword mutable in the program.

IlﬁZS Namespace Scope

&
We have been defining variables in different scopes in C++ programs, such as classes,

functions, blocks, etc. ANSI C++ Standard has added a new keyword namespace to define
a scope that could hold global identifiers. The best example of namespace scope is the C++
Standard Library. All classes, functions and templates are declared within the namespace
named std. That is why we have been using the directive

using namespace std;

in our programs that uses the standard library. The using namespace statement specifies
that the members defined in std namespace will be used frequently throughout the program.

Defining a Namespace
We can define our own namespaces in our programs. The syntax for defining a namespace
is similar to the syntax for defining a class. The general form of namespace is:

namespage Mamespace_name

{
[/ Declaration of
// varigbles, functions, closses, etc.

454 @ Object-Oriented Programming with C++

rote
There is one difference between a class definition and a namespace definition. The

namespace is concluded with a closing brace but no terminating semicolon.

Example:

namespace TestSpace

{
int m;
void display(int n)
{

}

I // No semicolon here

cout =< n:

Here, the variable m and the function display are inside the scope defined by the
TestSpace namezpace. If we want to aszign a value to m, we must use the scope resolution
operator as shown below.

TestSpace::m = 100;
Note that m is qualified using the namespace name.

This approach becomes cumbersome if the members of a namespace are frequently used. In
such cases, we can use a using directive to simplify their access. This can be done in two ways:

using namespace namespace_name; Jf using divective

using namespace name::member name; J/ using declaration

In the first form, all the members declared within the specified namespace may be accessed
without using qualification. In the second form, we can access only the specified member in
the program. Example:

using namespace TestSpace;
m = 100; [oK
display(200); // Ok

using TestSpace::m;

m = 100; J oK
display(200); J/ Not ok, display not visible

Nesting of Namespaces

A namespace can be nested within another namespace. Example:
namespace NSl

{

Copyrighted maierial

Hidden page

456 Object-Orlented Programming with C++

]
}
namespace Jf Unnomed nomespoce
{
int m = 200;
;
int main()
{
cout << "x = " =< Namel::x << "\n"; Hox s gualified
cout << "m = " =« Namel::m =< "\n";
cout =< "y = " << Namel::MameZ::y << "\n"; f ¥y is fully quolified
cout =< "m = " << m <= "\n%; /{ m is global
return 0;
}
PROGRAM 16.3
The output of Program 16.3 is:
x = 4,56
m = 100
y = 1.23
m = 200
rote
We have used the variable m in two different scopes.)

Program 16.4 shows the application of both the using directive and using declaration.

ILLUSTRATING .JHE; using KEYWORD . ° 0.

#include <iostream=
ustng namespace std;

[! Defining o namespace
namespace Namel

double x = 4, 56;
int m = 1003

namespace Mame? I/ Nesting namespaces

(Contd)

Hidden page

458 e Object-Oriented Programming with C++

int divide{int x,int v} /) definition
i
return(x,/y);

int prod(int x,int y); /f declaration only
)

int Functioms::prod(int x,int y) // quolified
|

int main()
{

return{x*y) ;

using namespace Functions;

cout << "Diyision: " << divide(20,10) << "\n";
cout << "Multiplication: * =< prod{(20,10) =< "\n";

return 03

PROGRAM 16.5

The output of Program 16.5 would be:

Diwision: 2
Multiplication: 200

s e
When a function that is declared inside a namespace 15 defined outside, it should be
qualified.

Program 16.6 demonstrates the use of classes inside a namespace.

USING CLASSES -IN NAMESPACE SCOPE

include <iopstream>
using namespace stdj

namespace Classes

{
{

class Test

(Contd)}

New Features of ANSI Cs+ Standard 2459

private:
int m:

public:

Test(int a)
{

m= a;

void display()
{
cout << "m = " << m << "\p";

s
)

int main()

{
J/ using scope resolution
Classes::Test T1(200);
Tl.display();

/[using directive
using namespace Classes;
Test TZ2(400);

T2.display();

return 0;

PROGRAM 16.6
The output of Program 16.6 would be:
m = 200
m = 400

Ilﬁ.ﬁ Operator Keywords

The ANSI C++ Standard proposes keywords for several C++ operators. These keywords,
listed in Table 16.1, can be used in place of operator symbels in expressions. For example,
the expression

x>y & m =100

may be written as

Copyrighted material

460 @ Object-Criented Programming with C++
x>y and m not_eq 100

Operator keywords not only enhance the readability of logical expressions but are also
useful in situations where keyboards do not support certain special characters such as &,
A and -,

Table 16.1 Operator keywords

el and logical AND
| 1 or logical OR
I not logical NOT
= not_eq inequality
& bitand bitwise AND
| bitor bitwise inclusive OR
= HOF bitwise exclusive OR
- compl bitwise complement
= and_eq hitwise AND assignment
|= OT_i bitwise inclusive OR
assignment
M= XOT_eq bitwise exclugive OR
asgignment

16.7 New Keywords

ANSI C#+ has added several new keywords to support the new features. Now, C++ contains
64 keywords, including main. They are listed in Table 16.2. The new keywords are boldfaced.

Table 16.2 ANSI C++ keywords

asm - elae namespace template
auto BN new thiz
bool explicit operator throw
break export private true
CASE extern protected try
catch false public typedefl
char float register typeid
class for reinterpret_cast typename
conat friend return union
const_cast goto ghort unsigned
continue if signed using
default inline sizeol virtual
delete int static void
do long static-cast volatile
douhble main atruct wihar_t
dynamic_cast mutable switch while

New Features of ANSI C++ Standard # 461

Ilﬁ.ﬂ New Headers

The ANSI C++ Standard has defined a new way to specify header files. They do not use .h
extension to filenames. Example:

#Finclude <iostream=
finclude <fstream>

However, the traditional style <iostream.hs, <fstream.hs, ete. is still fully supported.
Some old header files are renamed as shown below:

0ld style New style
<assert.h> <cassert>
<ctype.h= <cetype>
<float.h> <cfloat>
<limits.h= «climita=
<math. hs <emaths
watdin he <eatdios
<stdlib.h> <catdlib>
<string.h> westring>
wtimeh> <ctime:s

\ SUMMARY -

L=

$¢ ¢ ¢ ¢ ¢o0 ¢

ANSI C++ Standard committee has added many new features to the original C++
language specifications.

Two new data types bool and wechar_t have been added to enhance the range of data
types available in C++,

The bool type can hold Boolean values, true and false.

The wehar_t type is meant to hold 16-bit character literals.

Four new cast operators have been added: static_cast, const_cast, reinterpret_cast
and dynamic_cast.

The static_cast operator is used for any standard conversion of data types.

The const_cast operator may be used to explicitly change the const or volatile
attributes of objects,

We can change the data type of an ohject into a fundamentally different type using the
reinterpret_cast operator.

Casting of an object at run time can be achieved by the dynamic_cast operator.
Another new operator known as typeid can provide us run time type information about
ohjects.

A constructor may be declared explicit to make the conversion explicit.

We can make a data item of a const object or function modifiable by declaring it mutable.

Hidden page

New Features of ANSI C++ Standard & 463

» RTTI » typeid

» source type » typeinfo header

» standard librarv » unnamed namespaces
» static casts » using declaration

> static_cast » using directive

> std namespace » using namespace

» target type » volatile

» true value » wchar t

> Lype casts » wide character literal
> type_info class > xor

» type_safe casting » xor_eq

| Review Questions

16.1 List the two data types added by the ANSI C++ standard commitiee.

16.2 What is the application of beel type variables?

16.3 What is the need for wehar_t character type?

16.4 List the new operators added by the ANSI C++ standard commiitee,

16.5 What iz the application of const_cast operator?

16.6 Why do we need the operator static_cast while the old style cast does the same
Job?

16.7 How does the reinterpret_cast differ from the statie_cast?

16.8 What is dynamic casting?. How s it achieved in C4++7

16.9 What iz typeid operator?. When is it used?

16.10 What is explicit conversion?. How is it achieved?

16.11 When do we use the keyword mutable?

16.12 What is a namespace conflict? How is it handled in C++¢

16.13 How do we access the variables declared in a named namespace?

16.14 ‘What is the difference betiveen using the using namespace directive and using
the using declaration for accessing namespace members?

16.15 What is wrong with the following code segment?

const int m = 100;
int *ptr = &m;

Copyrighted material

464 e Object-Oriented Programming with C++

16.16 What is the problem with the following statements?

const int m
double *ptr

100;
const_cast<double*=(&m);

16.17 What will be the output of the following program?

#include<iostream. h=
class Person
i

i
int matin()

Person John;
cout << " John 15 a ";

cout << typeid{John).name() << "\n";
]

16.18 What is wrong with the following namespace definition?

namespace Main

: int main()
LA
] o
1

I Debugging Exercises

16.1 ldentify the error in the following program.
ginclude <ipstream=

class &

{

public:
Al)
{
}

Alint 1)
(
1

Copyrighted material

16.2

New Features of ANSI C++ Standard

i
class B
{
puhlic:
B()
{
i
explicit B(int)
{
i
¥
void main()
{
A al=12:
A aZ;
A ajd=al;
B bl = 12:
!

Identify the error in the following program.

#include <iostream.h>

class A
{
protected:
int i;
public:
Al)
{
i=10;
}

int getI()
{

@465

Copyrighted material

466 8-

16.3

Ohject-Oriented Programming with C++

return 1;
5

class B: public A

{
public:

B()
1
I

int getl()

return i + i;
B

yoid main()

{
A *a = new A();
B *b = static_cast<B*>(a);
cout << b->getI();

Identify the error in the following program.

#include <iostream.h=

namespace A

{
int 1
void displ()
{
cout =< {;
)
}

void main()

{
namespace Inside

New Features of ANSI C++ Standard -2 467

int insidel;
void dispInsidel()
{

cout << insidel;

}

Arzi = 10
cout =< A::i;
A::displI();

Inside::insidel = 20;
cout =< Inside::insidel;
Inside: :dispInsidel();

I Programming Exercises

16.1 Write a program to demonstrate the use of reinferpret_cast operator,

16.2 Define a namespace named Constanis thai contains declarations of some
constants. Write a program that uses the constants defined in the namespace
Constanis.

YYYYYYYYYYYYYYYY

Object-Oriented Systems \

Development

Key Concepts

Software development components
Procedure-oriented development tools
Object-oriented paradigm

DOP notations and graphs

Data flow diagrams

Object-oriented design

Top-down decomposition

Syetem implementation
Procedure-oriented paradigm

Classic software development life cyele
Fountain model

Ohject-oriented analysis

Textual analvsis

Class hierarchics

Structured design

Prototyping paradigm

17.1 Introduction

Software engineers have been trying
various fools, methods, and procedures to
control the process of software development
in order to build high-quality software with
improved productivity. The methods
provide "how to 's" for building the software
while the tools provide automated or semi-
automated support for the methoeds. They
are used in all the stages of software
development process, namely, planning,
analysis, design, development and
maintenance. The software development
procedures integrate the methods and tools
together and enable rational and timely
development of software systems (Fig.17.1).
They provide guideines as to how to apply
the methods and tools, how to produce the
deliverables at each stage, what controls
to apply, and what milestones to use to
assess the progreas.

Object-Oriented Systems Development 2469

Software development
Procedures
Methods

Tools

Fig. 17.1 < Software development components |

There exist a number of software development paradigms, each using a different set of
methods and tools. The selection of a4 particular paradigm depends on the nature of the
application, the programming language used, and the controls and deliverables required.
The development of a successful system depends not only on the use of the appropriate
methods and techniques but also on the developer's commitment to the objectives of the
aystem. A successful aystem must:

satisfy the user requirements,

be easy to understand by the users and operators,

be easy to operate,

have a good user interface,

be easy to modify,

be expandable,

have adequate security controls against misuse of data,
handle the errors and exceptions satisfactorily, and

be delivered on schedule within the budget.

In this chapter, we shall review some of the conventional approaches that are being
widely used in software development and then discuss some of the current ideas that are
applicable to the object-oriented software development.

IIT.E Procedure-Oriented Paradigms

Software development iz usually characterized by a series of stages depicting the various
tasks involved in the development process. Figure 17.2 illustrates the classic software life
eycle $hat is most widely used for the procedure-oriented development. The classic life cycle
is based on an underlying model, commonly referred to as the "water-fall" model. This model
attempts to break up the identifiable activities into series of actions, each of which must be

el e R R ol ol

470 Object-Criented Programming with C++

completed before the next begins. The activities include problem definition, requirement
analysis, design, coding, testing, and maintenance. Further refinements to this model include
iteration back to the previous stages in order to incorporate any changes or missing links.
Problem Definition: This activity requires a precise definition of the problem in user terms.
A clear statement of the problem is erucial to the success of the software. It helps not only
the developer but also the user to understand the problem better.

Problem
Jafinils

Analysis

T esting

Fig. 17.2 &= Classic software development life cycle (Embedded "water-fall' mode) '

Analysiz: This covers a detailed study of the requirements of both the user and the software.
This activity is basically concerned with what of the system such as

what are the inputs to the system?
what are the processes required?
what are the outputs expected?
what are the constraints?

Design: The design phase deals with various concepts of system design such as data
structure, software architecture, and algorithms. This phase translates the requirements
into a representation of the software. This stage answers the questions of how.

Coding: Coding refers to the translation of the design into machine-readable form. The
more detailed the design, the easier is the coding, and better its reliability.

LR N N

Object-Oriented Systems Development 2471

Testing: Once the code is written, it should be tested rigorously for correctness of the code
and results. Testing may involve the individual units and the whole system. It requires a
detailed plan as to what, when and how to test.

Maintenance: After the software has been installed, it may undergo some changes. This
may occur due to a change in the user's requirement, a change in the operating environment,
or an error in the software that has not been fixed during the testing. Maintenance ensures
that these changes are incorporated wherever necessary.

Each phase of the life cycle has its own goals and outputs. The output of one phase acts as
an input to the next phase. Table 17.1 shows typical outputs that could be generated for
each phase of the life cycle.

Table 17.1 Culputs of classic software life cycle

Phase Output
Problem definition " Problem statement sheet
{why) . Project request
. Analysis » Requirements document
{what) * Feasibility report
. Specifications document
* Acceptance test criteria
Design » Design document
{how) * Test class design
Coding & Code document (program)
(how) s Test plan
» User manual
Testing o Tested code
(what and how) # Test resulis
* Bystem manual
Maintenance * Maintenance log sheets
* Version documents

The software life cycle, as described above, is often implemented using the functional
decomposition technigue, popularly known as top-down, modular approach. The functional
decomposition technique is based on the interpretation of the problem space and its translaion
into the solution space as an inter-dependent set of functions. The functions are decomposed
into a sequence of progressively simpler functions that are eventually implemented. The
final system is seen as a set of functions that are organized in a top-down hierarchical
structure.

There are several flaws in the top-down, functional decompeosition approach. They inelude:

1. It does not allow evolutionary changes in the software.
2. The system is characterized by a single function at the top which is not always
true. In fact many systems have no top.

472 Object-Oriented Programming with Ce+

3. Data is not given the importance that it deserves,
4. It does not encourage reusability of the code.

Il'.-".?j Procedure-Oriented Development Tools

A large number of tools are used in the analysis and design of the systems. It is important
to note that the process of systems development has been undergoing changes over the
years due to continuous changes in the computer technology. Consequently, there has been
an evolution of new system development tools and techniques. These tools and techniques
provide answers to the how questions of the system development.

The development tools available today may be classified as the first generation, second
generation, and third generation tools. The first generation tools developed in the 1960's
and 1970's are called the traditional tools. The second generation tools introduced in the
late 1970's and early 198(0's are meant for the structured systems analysis and design and
therefore they are known as the structured tools. The recent tools are the third generation
ones evolved since late 1980's to suit the object-oriented analysis and design.

Table 17.2 shows some of the popular tools used for various development processes
under the three categories. Although this categorization is questionable, it gives a fair idea
of the growth of the tools during the last three decades.

Table 17.2 System development tools

T‘T'*" Pr- < Firsl generation Second generation Third generation
Physical processes System flowcharts Context diagrams Inheritance graphs
Object-relationship charta
Data Layout forms Data dictionary Ohjects obhject dictionary
representation Grid charts
Logical processes Playseript English Decision tables &trees Inberitance graphs
narrative Data flow diagrams Data flow diagrams
Program Program flowcharta Structure charta State change diagrams
representation 'O layouts Warnier /Orr diagrams Ptech diagrams
CoadYourdon charts

This section gives an overview of some of the most frequently used first and second
generation tools. Object-oriented development tools will be discussed later in this chapter
(as and when they are required).

System flowcharts: A graphical representation of the important inputs, outputs, and data
flow among the key points in the system.

Program flowcharts: A graphical representation of the program logie.

Playscripts: A narrative description of executing a procedure.

Layout forms: A format designed for putting the input data or displaying results.

Grid charts: A chart showing the relationship between different modules of a system.
Context diagrams: A diagram showing the inputs and their sources and the outputs and
their destinations. A context diagram basically outlines the system boundary.

Object-Oriented Systems Development 473

Data flow diagrams: They describe the flow of data between the various components of a
system. It is a network representation of the system which includes processes and data
files. -
Data dictionary: A structured repository of data about data. It contains a list of terms and
their definitions for all the data items and data stores.

Structure chart: A graphical representation of the control logic of functions (modules)
representing a system.

Decision table: A table of contingencies for defining a problem and the actions to be taken.
It presents the logic that tells us what action to take when a given condition is true or
otherwise.

Decision free: A graphic representation of the conditions and outcomes that resemble the
branches of a tree.

Warnier/Orr diagrams: A horizontal hierarchy chart using nested sets of braces, psuedo-
codes, and logic symbols to indicate the program structure.

17.4 Object-Oriented Paradigm

The object-oriented paradigm draws heavily on the general systems theory as a conceptual
background. A system can be viewed as a collection of entities that interact together to
accomplish certain ohjectives (Fig. 17.3). Entities may represent physical objects such as
equipment and people, and abstract concepts such as data files and functions. In object-
oriented analy=is, the entities are called objects.

PROCESS

Entity Entity

INPUT ———s | . QUTPUT
{Objectives)

Enlity | Entity

Fig. 17.3 < A system showing inter-relationship of entities |

As the name indicates, the ohject-oriented paradigm places greater emphasis on the ohjects
that encapsulate data and procedures. They play the central role in all the stages of the
software development and, therefore, there exists a high degree of overlap and iteration

between the stages. The entire development process becomes evolutionary in nature. Any

Hidden page

Hidden page

476e

Classname
Clagsname |
Data Functions 1
|
Fumctions 2 Data
Functions]
Functions 3
(@} &)

Object-Orfented Programming with Ces

(=)

Person

<>

Clags

DOhbjiect A

Object B

Copyrighted material

Hidden page

Hidden page

Object-Oriented Systems Development 2479

X ¥
Servar Client
Fig. 1713 < Clienf-server relationship

Fig.17.14 < Process layering (A process may have typically five to seven obpects)

I 17.6 Steps in Object-Oriented Analysis

Object-oriented analysis provides us with a simple, yet powerful, mechanism for identifying
objects, the building block of the software to be developed. The analysis is basically concerned
with the decomposition of a problem into its component parts and establishing a logical
maodel to describe the system functions.

The ohject-oriented analysis ((00A) approach consists of the following steps:

Understanding the problem.
Drawing the specifications of requirements of the user and the software.
Identifying the objects and their attributes.
Identifying the services that each object is expected to provide (interface).
Establishing inter-connections (collaborations) between the objects in terms of ser-
vices required and services rendered.

Although we have shown the above tasks as a series of discrete steps, the last three
activities are carried out inter-dependently as shown in Fig. 17.15.

o G2 b

480 Object-Oriented Programming with C++

Problem |
defimition

— 1
Requiremeani |
specilicabinn

i

' R —

| |
‘ donily safvitas Idantify s

| ’V collabarations

Fig. 17.15 ' &= Achitnties of object-orienfed analysis :

Problem Understanding

The first step in the analysis process is to understand the problem of the user. The problem
statement should be refined and redefined in terms of computer system engineering that
could suggest a computer-based solution. The problem statement should be stated, as far as
poasible, in a single, grammatically correct sentence. This will enable the software engineers
to have a highly focussed attention on the solution of the problem. The problem statement
provides the basis for drawing the requirements specification of both the user and the
software.

Requirements Specification

Once the problem is clearly defined, the next step is to understand what the proposed
system is required to do. It is important at this stage to generate a list of user requirements.
A clear understanding should exist between the user and the developer of what is required.
Bazed on the user requirements, the specifications for the software should be drawn. The
developer should state clearly

#® What outputs are required.

® What processes are involved to produce these outputs.
® What inputs are necessary.

® What resources are required.

These specifications often serve as a reference to test the final product for its performance
of the intended tasks.

Identification of Objects

Objects can often be identified in terms of the real-world objects as well as the abstract
ohjects. Therefore, the best place to look for objects is the application itself. The application
may be analyzed by using one of the following two approaches:

Copyrighted material

Ohbject-Oriented Systems Development ® 481

1. Data flow diagrams (DFD)
2. Textual analysis (TA)

Data Flow Diagram

The application can be repregented in the form of a data flow diagram indicating how the
data moves from one point to another in the system. The boxes and data stores in the data
flow diagram are good candidates for the objects. The process bubbles correspond to the
procedures. Figure 17.16 illustrates a typical data flow diagram. It is also known as a data
flow graph or a bubble chart.

A DFD can be used to represent a system at any level of abstraction. For example, the
DFD shown in Fig. 17.16 may be expanded to include more information (such as payment
details) or condensed as illustrated in Fig. 17.17 to show only one bubble.

Data
storg | DOOKS database
I
o ey Shipping
Fooo] Order { Process " instuctions [
Booksaller i | Siores
__,k_‘ ."'xh A o l——.-"—
s, T r.
Check y
credit status i
\ Omte T omer | .
o | database | _
h l r
Shipping ™. /" Shipment
niotice ", 4 information
-\.m .___.-'_-\-.\. .-._,
%, . I_-' C‘D"Eﬂt\'l.__-"
| customer
ey

Fig. 17.16 & Data flow diagram for order processing and shipping for a publishing company

Oeder /—\ linstructions
Cuslomer Process Warehouse

Fig. 17.17 <= Fundamental data flow diagram

Copyrighted material

482 @ Ohject-Oriented Programming with C++

Textual Analysis

This approach is based on the textual description of the problem or proposed solution. The
description may be of one or two sentences or one or two paragraphs depending on the type
and complexity of the problem. The nouns are good indicators of the objects. The names
can farther be classified as proper nouns, common nouns, and mass or abstract nouns.
Table 17.3 shows the various types of nouns and their meaning.

Table 17.3 Types of nouns

Type of noun Meaning Example
Common noun Deacribe classes of things Vehicle, customer
(entites) income, deduction
Proper noun Names of specific things Maruti car, John, ABC
COMPATY
Mase or abstract noun Describe a quality, Quantity or an Salaryv-ineome house-loan,
activity associated with a noun feet, traffic

It is important to note that the context and semantics must be used to determine the
noun categories. A particular word may mean a common noun in one context and a mass or
abstract noun in another,

These approaches are only a guide and not the ultimate tools. Creative perception and
intuition of the experienced developers play an important role in identifying the objects.

Using one of the above approaches, prepare a list of objects for the application problem.
This might include the following tasks:

1. Prepare an object table.

2. Identify the objects that belong to the solution space and those which belong to the
problem space only, The problem space objects are outside the software boundary.

3. Identify the attributes of the solution space objects.

Remember that not all the nouns will be of interest to the final realization of the solution.
Consider the following requirement statements of a system:

Identification of Services

(mce the objects in the solution space have been identified, the next step is to identify a set
of services that each object should offer. Services are identified by examining all the verbs
and verb phrases in the problem description statement. Verbs which can note actions or
occurrences may be classified as shown in Table 17.4.

Doing verbs and compare verbs usually give rise to services (which we call as functions in

C++). Being verbs indicate the existence of the classification structure while having verbs
give rise to the compesition structures.

Copyrighted material

Hidden page

Hidden page

Object-Oriented Systems Development . # 485
The knowledge of such relationships is important to the design of a program.

Organization of Class Hierarchies

In the previous step, we examined the inheritance relationships. We must re-examine them
and create a class hierarchy so that we can reuse as much data and/or functions that have
been designed already. Organization of the class hierarchies involves identification of commaon
attributes and functions among a group of related classes and then combining them to form
a new class. The new class will serve as the super class and the others as subordinate
classes (which derive attributes from the super class). The new class may or may not have
the meaning of an object by itself. If the object is created purely to combine the common
attributes, it is called an abstract class.

This process may be repeated at different levels of abstraction with the sole objective of
extending the classes. As hierarchy structure becomes progressively higher, the amount of
specification and implementation inherited by the lower level classes increases. We may
repeat the process until we are sure that no new class can be formed. Figure 17.18 illustrates
a two-level iteration process.

{a) Objects in solution space

] 1 [5] [o] [

b} First level of hierarchy

Z

| | I |
A B c D E

{c) Second level of hierarchy

Fig.17.18 &> Level of cass hierarchies |

Copyrighted material

486% Object-Oriented Programming with C++

The process of a class organization may finally result in a single-tree model as shown in
Fig. 17.18(a) or forest model as shown in Fig. 17.1%b).

(a) Single-tree modeal

b} Forast modal

Fig. 17.19 < Organisation of classes |

Design of Classes

We have identified classes, their attributes, and minimal set of operations required by the
concept a class is representing. Now we must look at the complete details that each class
represents, The important issue is to decide what functions are to be provided. For a class
to be useful, it must contain the following functions, in addition to the service functions:

Copyrighted material

Hidden page

Hidden page

Hidden page

490 e Object-Oriented Programming with C++

The driver program is the gateway to the users. Therefore, the design of user-system
interface (UUST) should be given due consideration in the design of the driver program. The
svstem should be designed to be user-friendly so that users can operate in a natural and
comfortable way.

I 17.8 Implementation

Implementation includes coding and testing. Coding includes writing codes for classes,
member functions and the main program that acts as a driver in the program. Coding
becomes easy once a detailed design has been done with care.

No program works correctly the first time. So testing the program before using is an
essential part of the software development process. A detailed test plan should be drawn as
to what, when and how to test. The class interfaces and class dependencies are important
aspects for testing. The final goal of testing is to see that the system performs itz intended
job satisfactorily.

IIT-','} Prototyping Paradigm

Most often the real-world application problems are complex in nature and therefore the
structure of the system becomes too large to work out the precise requirements at the
beginning. Some particulars become known and clear only when we build and test the
system. After a large system is completed, incorporation of any feature that has been
identified as “missing” at the testing or application stage might be too expensive and time
consuming. One way of understanding the system design and its ramifications before a
complete system is built is to build and test a working model of the proposed system. The
model system is popularly known as a profotype, and the process is called prototyping. Since
the object-oriented analysis and design approach is evolutionary, it is best suited for
prototyping paradigm which iz illustrated in Fig. 17.22.

A prototype is a scaled down version of the system and may not have stringent performance
criteria and resource requirements. Developer and customer agree upon certain “outline
specifications” of the system and a prototype design is proposed with the outline requirements
and available resources. The prototype is built and evaluated. The major interest is not in
the prototype itself but in its performance which iz used to refine the requirement
specifications. Prototypes provide an opportunity to experiment and analyze various aspects
of the system such as system structure, internal design, hardware requirements and the
final system requirements. The benefits of using the prototype approach are:

We can produce understandable specifications which are correct and complete as
far as possible,

® The user can understand what is being offered.

® Maintenance changes that are required when a system is installed, are minimized.

® Development engineers can work from a set of specifications which have been tested
and approved.

Object-Oriented Systems Development * 491

System

Dutling
! requirements

Dasign

Build
prototype
Make
. ierlaied
Fu -
Evaluate system
prototype

Fig. 1722 < Profotype paradigm

Prototype iz meant for experimenting. Most often it cannot be tuned into a product.
However, occasionally, it may be possible to tune a prototype into a final product if proper
care is taken in redesigning the prototype. The best approach is to throw away the prototype
after use.

17.10 Wrapping Up

We have discussed various aspects of the object-oriented analysis and design. Remember,
there is no one approach that iz always right. You must consider the ideas presented here as
only guidelines and use your experience, innovation and creativity wherever possible.

Following are some points for your thought and innovation:

1. Set clear goals and tangible objectives.
2. Try to use existing systems as examples or models to analyze your system.

492 Object-Oriented Programming with C++

LUse classes to represent concepts.

Keep in mind that the propozed system must be flexible, portable, and extend-
able.

Keep a clear documentation of everything that goes into the system.

Try to reuse the existing functions and clazses.

Keep functions strongly typed wherever possible.

Use prototypes wherever possible.

Match design and programming style.

Keep the system clean, simple, small and efficient as far as possible.

W £0

= il e

\ SUMMARY -

¢ The classic system development life cycle most widely used for procedure oriented
development consists of following steps.
® Problem definition

Analyzis

Design

Coding

Testing

Maintenance

¢» In object oriented paradigm, a system can be viewed as a collection of entities that *
interact together to accomplish certain objectives.

&> Inobject oriented analysis, the entities are called objects. Object oriented analysis ((0A)
refers to the methods of specifying requirements of the software in terms of real world
ohjects, their behaviour and their interactions with each other.

> Ohbject oriented design (O0D) translates the software requirements into specifications
for objects, and derives class hierarchies from which the objects can be created.
Object oriented programming (OOP) refers to the implementation of the program using
ohjects, with the help of object oriented programming language such as C++.
& The object oriented analysis (QO0A) approach consists of the following steps:
Defining the problem.
Estimating requirements of the user and the software.
Identifying the objects and their attributes.
Identifving the interface services that each object is supposed to provide.
Establishing interconnections between the objects in terms of services required and
services rendered.
<« The object oriented design (O0OD) approach involves the following steps:

® Review of objects created in the analysis phase.

a Specification of class dependencies.

g

Copyrighted material

Hidden page

:
L

data dictionary

data flow diagrams
decision table

deczion tree

design

development tools

doing verbs

driver program

entities

entity relationship diagram
entity-relationship

fist generation
flowcharts

forest model

fountain model
functional decomposition
grid charts

has-a relationship
having verbs
hierarchical chart
information flow diagram
inheritance relationship
instances of objects

is-a relationship

Y Y Y Y Y Y Y Y Y Y Y Y Yy Y Y Y Y Y Y YYYYYY

layout forms

| Review Questions

Ohject-Oriented Programming with Ce+

Y Y Y Y Y Y Y Y Y Y YY YY YYYYYYYYYY

proper nouns
prototype
protolyping
prototyping paradigm
second peneration
zelection

SO LIETIee
aingle-tree model
software life cycle
solution space
stative verhs
structure chart
structured design
structured tools
system flowcharta
testing

textual analysis
third generation
tools

top-down approach
traditional tools
use relationship
Warnier diagrams
water-fall model

17.1 List five most important features, in your opinion, that a software developer
should keep in mind while designing a sysfem.

17.2 Deseribe why the testing of software is important.

17.3 What do you mean by maintenance of software? How and when is it done?

17.4 Who are the major players in each stage of the systems development life cycle?

17.5 Is it necessary to study the existing system during the analysis stage? [If ves,

why? If no, why not?

17.6 What are the imitations of the classic software development life cycle?
17.7 “Software development process is an iferafive process”. [Discuss,

Hidden page

