The McGraw-Hill Companies _

FOURTH EDITION

~ 8 -I-.F‘

L

Y

0{\\ oS a’;}o

OBJECT /7
ORIENTED /- =%
=

|

%

: 3

[

A

el
- ¥

[

[}
|

1

[
) _}:

Y

=" PROGRAMMING ~-o¢

b e e

i ¢

¥ +
v +
N 4 +
) ¢
Y {

r 1

oA 2 S ;.’s}-

iy

* ¥

- v
-l iy
A A b b

E BALAGURUSAMY

Now a unique opportunity to access the Web Resources!

Look for the Genuinaness Catiicale insida the book]

l

[Scrafch the silver ink on the Genuinenass Cerdificate to tind your Unique Access Number* J

L4
{ Access the website]

Rt fwww. mbihe. comvbalagurusamy/oopde

¥

[Chick on tha First Time Usars Link in the OLC menu an your left J

[Al tha bottom of the text appearing on your right-hand side, ook for Register Now]

and click on tha Student Enk

. J

[Mow click on the link that says: | have a registration code that came with my book. J

l

When asked to enfar your code, fype in your Unique Access Mumber]

o

[Create your Personalized Account by selecting your username and password]

l

[Click on the Student Edition Link in the OLC manu on your left]

l

[Login using your parsonalkzed usamame and passwond]

* This numbear is meant for one time use and is saif desiruchibie

FOURTH EDITIOMN

il 0
Irr

.+ ORIENTED
~ PROGRAMMING

"
%
%
)
*
L]

"'rr e
-I._f'f
)

"l

This One [

O R
COKZ-DEXBIOK 1 o material

DGX-5

About the Author

E Balagurusamy, former Vice Chancellor, Anna University, Chennai, is currently Member,
Union Public Service Commission, New Delhi. He is a teacher, trainer, and consultant in
the fields of Information Technology and Management. He holds an ME (Hons) in Electrical
Engineering and a Ph. D. in Systems Engineering from the Indian Institute of Technology,
Roorkee. His areas of interest include Object-Oriented Software Engineering, Electronic
Business, Technology Management, Business Process Re-engineering, and Total Quality
Management.

A prolific writer, he has authored a large number of research papers and several books.
His best selling books, among others include:

Programming in C#, 2/e
Programming in Java, 3/e
Programming in ANSI C, 4/e
Programming in BASIC, 3/e
Numerical Methods, and
Reliability Engineering

LA N N NN

A recipient of numerous honours and awards, he has been listed in the Directory of
Who's Who of Intellectuals and in the Directory of Distinguished Leaders in Education.

OBJECT
ORIENTED
PROGRAMMING
WITH

C++

FOURTH EDITION

E Balagurusamy _

Member
Union Public Service Commission
New Delhi

Tata McGraw-Hill Publishing Company Limited
NEW DELHI

Mo Graw-Hill Cffices

New Delhi MNew York St Louis San Francisco Auckland Bopoti Caracas
Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal
San Juan Santiago Singapore Sydney Tokve Toronto

i—l| Tata McGraw-Hill

Published by Tata MoGraw-Hill Publishing Company Limited,
7 West Patel Magar, New Delhi 110 008,

Copyright © 2008, 2006, 2001, 1994, by Tata McGraw-Hill Publishing Company Limited

No part of this publication may be reproduced or distributed in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise or stored in a database or retrieval system without the prios
written permission of the publishers, The program listings (if any) may be entered, =tored and execwied in a
computer system, but they may not be reproduced for publication.

Fouwrth reprint 2008
DOLCRDRXRAZXNE

This edition can be exported from India only by the publishers,
" Tata McGraw-Hill Publishing Company Limited.

ISBN (13 digits): 978-0-07-066907-9
ISBN (10 dugits): O-07-066907 -4

Muanaging Director: Ajay Shukia

Creneral Manager: Publishing—SEM & Tech Ed: Vibha Mahajan
Sponsoring Editor: Shalind Sha

Jr. Sponsoring Editor: Nilanjan Chakravarty

Senior Copy Editor: Dipika Dey

senior Prodoction Manager: P L Ponding

Creneral Manager: Marketing—Higher Education & School: Mickael J, Criz
Product Manager; SEM & Tech Ed: Biju Ganesan

Controller—Production: Rajender P Ghansela
Asst. Gieneral Manager—Production: 8 L Dogra

Information contained in this work has been obtained by Tata McGraw-Hill, from sources believed o be
reliable, However, neither Tata McGraw-Hill nor its authors guarantee the accuracy or completeness of any
information published herein, and peither Tata McGraw-Hill nor its authors shall be responsible for any
errors, omissions, or damages arising out of vse of this information, This work is published with the
understanding that Tata McGraw-Hill and its authors are supplying information bt are nol attempling 1o
render engimeering or other professional services. If such services are required, the assistance of an
appropriate professional should be sought.

Typeset at Script Makers, 19, Al-B, DDA Market, Paschim Vihar, New Delli 110 063, and prainted at
Gopsons, A-2 & 3, Sector 64, Noida - 201 30/

Cover: Gopsons

rhe McGraw-Hill Companies

Contents

Preface xiLi
1. Principles of Object-Oriented Programming 1
1] Soft Crisis 7

1.2 Software Evolution 3
1.3 A Look at Procedure-Oriented Propramming 4
1.4 Object-Oriented Programming Paradigm 6
1.5 Basic Concepta of Object-Oriented Prt;grﬂ.mming i
16 Benefits of OOPF 12
1.7 Object-Oriented Languages 13
1.8 Applications of QOP 14
Summary 15
Review Questions 17

2. Beginning with C++ 19

21 What 1a C+4+7 19
2.2 Applications of C++ 20
2.3 A Simple C++ Program 20
24 More C44 Statements 35
2.5 An Example with Class 258
2.6 Structure of C++ Program 29
2.7 Creating the Source File 30
2.8 Compiling and Linking 30
Summary J1
Review Questions 32
Debugging Exercises 33
Programming Exercises 34

3. Tokens, Expressions and Control Structures 35

d1 Introduction 35

3.9 Tal 26

3.3 Kevwords 36

44 Identifiers and Constants 36
a5 Basic Data Types 38

3.6 User-Defined Data Types 40
3.7 Derived Data Types 42

vi ® Contents
3.8 Symbolic Constants 4.3
3.9 Type Compatibility 45
210 Declaration of Variables 45
3.11 Dynamic Initialization of Variables 46
312 Referencs Variables 47
3.13 Operators in C++ 49
3.14 Scope Resolution Operator 50
3.15 Member Dereferencing Operators 52
316 Memory Management Operators 52
3.17 Manipulators 55
3.18 Type Cast Operator 57
3.19 Expressions and their Types 58
3.20 Special Assignment Expressions 60
3.21 Implicit Conversions 61
322 Operator Overloading 63
3.23 Operator Precedence 63
424 Control Structures &4
Summary 69
Review Questions 71
Debugging Exercises T2
Programming Exercises 75
4, Functions in C++ 77
41 Introduction 77
42 The Main Function 78
4.3 Function Prototyping 79
4.4 Call by Reference 81
4.5 Heturn by Reference 82
L 6 Inline F : T
4.7 Default Arpuments 84
4.8 const Arpuments 87
4.9 Function Overloading 87
4.11 Math Library Functions 50
Summary 50
Review Questions 92
Debugging Exercises 853
Programming Exercises 95
IS. Classes and Objects 96

g1 Introduction 96
T C S Revisited 97

5.4

Specifying a Class 99

Contents

b.4 Defining Member Functions 103
5.5 A C++ Program with Class 104
5.6 Making an Outzide Function Inline 106
5.7 Nesting of Member Functions 107
68 Private Member Functions 108
59 Arrays within a Clags 109
5.10 Memory Allocation for Objectz 114
511 Static Data Members 115
5.12 Static Member Functions 117
5.13 Arravs of Objects 119
5.14 Objects as Function Arguments 122
5.15 Friendly Functions 124
5.16 Returning Objects 130
5.18 Pointers to Members 132
5.19 Local Classes]34
Summary 135
Review Questions 136
Debugging Exercises 137
Programming Exercises 142

® vii

6. Constructors and Destructors 144
61 Introduction 44
62 Constructors J45
6.4 Multiple Constructors in a Class 150
6.6 Constructors with Default ﬁLrEumth-; Ia3
6.6 Dyvnamic Initialization of Objects 153
6.7 Copy Constructor 156
6.8 Dvnamic Constructors 158
6.9 Constructing Two-dimensional Arrays 160
6.10 const Objects 162
611 Destructors J62
Summary 164
Review Questions 165
Debugging Exercises 166
Programming Exercises 169
7. Operator Overloading and Type Conversions 171

11 Introduction 777

7.2 Defining Operator Overloading 172
7.3 Owverloading Unary Operators 173
7.4 Overloading Binary Operators 176

viii ®

Contenis

7.5

Overloading Binary Operators Using Friends

I78

7.6

Manipulation of Strings Using Operators 183

7.7

Rules for Overloading Operators 186

7.8

Type Conversions I87

Summary 185

Review Questions 196
Debugging Exercises 197
Programming Exercizses 200

8. Inheritance: Extending Classes

201

81 Introduction 2071

8.2

Defining Derived Classes 202

8.3

Eil‘.l.E’]E Inheritance 204

8.4

Making a Private Member Inheritable 210

85 Multilevel Inheritance 2713

8.6

Multiple Inheritance 218

87 Hierarchical Inheritance 224

8.8

Hybrid Inheritance 225

8.10 Abstract Classes 232

8.12

Member Classes: Nesting of Classes 240

9. Pointers, Virtual Functions and Polymorphism

Summary 241

Review Questions 243
Debugging Exerciges 243
Programming Exercises 248

251

81 Introduction 257
92 Pointers 253

9.3

Pointers to Objects 265

24

this Pointer 270

9.5 Pointers to Derived Classes 273
T Vi 1F , 575

Summary 282

Review Questions 283
Debugging Exercises 284
Programming Exercises 289

10. Managing Console I/O Operations

10.1 Introduction 290
102 Ctt+ Streams 297

290

Contents & ix

10.3 ;HIIEHIfEE fEiEEEE' 252

10.4 Unformatted V'O Operations 292
10.5 Formatted Console 'O Operations 301
10.6 Managing OQutput with Manipulators 312
Summary 317
Review Questions 319
Debugging Exercizses 320
Programming Exercises 321
11. Working with Files 323
111 Introduection 333
11.2 Classes for File Stream Operations 325
11.3 Opening and Closing a File 325
114 Detecting end-of-file 334
1.5 More about Openi): File Modes 334
11.6 File Pointers and Their Manipulations 335
11.7 Sequential Input and Output Operations 338
118 Updating a File: Random Acess 343
119 Error Handling During File Operations 348
11.10 Command-line Arguments 350
Summary 353
Review Questions 355
Debugging Exercises 356
Programming Exercises 358
12. Templates 359
121 Introduction 359
122 Class Templates 360
12.3 Class Templates with Multiple Parameters 365
124 Function Templates 366
1256 Function Templates with Multiple Parameters 371
126 Overloading of Template Functions 372
12,7 Member Function Templates 373
128 Non-Type Template Arguments 374
Summary 375
Heview Questions 376
Debugging Exercises 377
Programming Exercises 379
13. Exception Handling 380
121 Introducti 280
13.2 Basics of Exception Handling 381

X ®

Contents

13.3

Exception Handling Mechanism 381

13.4
13.5
13.6

Throwing Mechanism 386
Catching Mechanism J86
Rethrowing an Exception 391

13.7

Specifying Exceptions 392

Summary 394

Review Questions 395
Debugging Exercises 396
Programming Exercises 400

IH. Introduction to the Standard Template Library 401
141 Introduction 407
14.2 Components of STL. 402
143 Contai 7
144 Algorithms 406
14 5 [terators 408
146 Application of Container Classes 409
147 Function Objects 418
summary 421
Review Questions 4323
Debugging Exercises 424
¢ Programming Exercizes 428
15. Manipulating Strings 428
151 Introduction 428
15.2 Creating (string) Objects 430
153 Manipulating String Objects 432
15.4 HRelational Operations 433
15.56 String Characteristics 434
15.6 Accessing Characters in Strings 436
15.7 Comparing and Swapping 438
Summary 440
Review Questions 441
Debugging Exercizses 442
Programming Exercises 445
16. New Features of ANSI C++ Standard 446

161 Introduction 448

162 New Data Tvpes 447

16.3 New Operators 449

164 Class Implementation 451

Contents 8 Xi

16.5 DNamespace Scope 453
16.6 Operator Kevwords 459
16.7 New Reyvwords 460
168 New Headers J61
Summary 461
Review Questions 463
Debugging Exercises 464
Programming Exercises 467

Ll‘f. Object-Oriented Systems Development 468

171 Introduction 468
17.2 Procedure-Oriented Paradigms 469
173 Procedure-Oriented Development Tools 472
17.4 Object-Oriented Paradigm 473
17.5 Object-Oriented Notations and Graphs 475
17.6 Steps in Object-Oriented Analvsis 479
17.7 Steps in Object-Oriented Design 483
17.8 Implementation 490
17.9 Prototyping Paradigm 480
7.10 Wrapping Up 481
Summary 492
Review Questions 494

Appendix A: Projects 496
Appendix B: Executing Turbo C++ * 539
Appendix C: Executing C+ + Under Windows 552
Appendix D: Glossary of ANSI C+ + Keywords 564
Appendix E: C+ + Operator Precedence 570
Appendix F: Points to Remember 572
Appendix G: Glossary of Imporiant O+ + and OOP Terms 584
Appendix H: C++ Proficiency Test 596
Bibliographby 632

Index 633

Copyrighted material

Principles of Object-Oriented
Programming

Y Y Y Y Y Y Y YYYYYY

Key Concepts

Software evolution
Procedure-oriented programming
Object-oriented programming
(jects

Classes

Data abstraction
Encapsulation

Inheritance

Pobvmorphizm

Dymamic binding

Message passing
Ohject-oriented lanpuages
1_”1_'|-|"T bazed languages

|1.1 Software Crisis

Developments in software technology
continue to be dynamic. New tools and
techniques are announced in quick
succession, This has forced the software
engineers and industry to continuously look
for new approaches to software design and
development, and they are becoming more
and more critical in view of the increasing
complexity of software systems as well as
the highly competitive nature of the
industry. These rapid advances appear to
have created a situation of crisis within the
industry. The following issues need to be
addressed to face this crisis:

® How to represent real-life entities
of problems in system design?

How to design systems with open
interfaces?

2 ® Object-Oriented Programming with C++

How to ensure reusability and extensibility of modules?

How to develop modules that are tolerant to any changes in future?
How to improve software productivity and decrease software cost?
How to improve the quality of software?

How to manage time schedules?

How to industrialize the software development process?

Many software products are either not finished, or not used, or else are delivered with
major errors. Figure 1.1 shows the fate of the US defence software projects undertaken in
the 1970s. Around 50% of the software products were never delivered, and one-third of
those which were delivered were never used. It is interesting to note that only 2% were used
as delivered, without being subjected to any changes. This illustrates that the software
industry has a remarkably bad record in delivering products.

3.5 - Paid for but
nol recaived
3 -
Deliversd
i 25— bt ol used

s 21 | r
§1.5—

-
a ! |
054 B ! |
B 1 '
0 —— e e | - | . i .

Fig. 1.1 « The state of US defence projects (eccording to fhe LS gmmrnml}- - I

Changes in user requirements have always been a major problem. Another study
(Fig. 1.2) shows that more than 50% of the systems required modifications due to changes
in user requirements and data formats. It only illustrates that, in a changing world with a
dynamic business environment, requests for change are unavoidable and therefore systems
must be adaptable and tolerant to changes.

These studies and other reports on software implementation suggest that software products
should be evaluated carefully for their quality before they are delivered and implemented.
Some of the quality issues that must be considered for critical evaluation are:

Correctness

Maintainability

Reusability

Openness and interoperability

o DO B3

Principles of Object-Oriented Programming ® 3

Portability
Security
Integrity

User friendliness

s

Selection and use of proper software tools would help resolving some of these issues.

Documentation Other Efficiency Changes in user
Hardware ! : improvement requiremants

Changes in
data formats

Fig. 1.2 = Breakdown of maimtenance cosls

1.2 Software Evolution

Ernest Tello, a well-known writer in the field of artificial intelligence, compared the evolution
of software technology to the growth of a tree. Like a tree, the software evolution has had
distinet phases or “layers” of growth, These layvers were built up one by ene over the last five
decades as shown in Fig. 1.3, with each layer representing an improvement over the previous
one, However, the analogy fails if we consider the life of these layers. In software systems,
each of the layers continues to be functional, whereas in the case of trees, only the uppermost
laver 18 functional.

Alan Kay, one of the promoters of the object-oriented paradigm and the principal designer
of Smalltalk, has said: "As complexity increases, architecture dominates the basic material”,
To build today's complex software it is just not enough to put together a sequence of
programming statements and setz of procedures and modules; we need to incorporate sound
construetion techniques and program structures that are easy to comprehend, implement
and modify.

Since the invention of the computer, many programming approaches have been tried.

4@ Object-Oriented Programming with C++

These include techniques such as modular programming, top-down programming, bottom-
up programming and structured programming. The primary motivation in each has been
the concern to handle the increasing complexity of programs that are reliable and
maintainable. These techniques have become popular among programmers over the last
two decades.

Machine language -
Assembly language

Procedure-omented

Otyect-oriented programming

Fig. 13" e Layers of computer software |

With the advent of languages such as C, structured programming became very popular
and was the main technigque of the 1980s. Structured programming was a powerful tool that
enabled programmers to write moderately complex programes fairly easily. However, as the
programs grew larger, even the structured approach failed to show the desired results in
terms of bug-free, easy-to-maintain, and reusable programs.

Object-Oriented Programming (O0OP) 18 an approach to program organization and development
that attempts to eliminate some of the pitfalls of conventional programming methods by
incorporating the best of structured programming features with several powerful new concepts. It
is a new way of organizing and developing programs and has nothing to do with any particular
language. However, not all languages are suitable to implement the OOP concepts easily.

Il.’j A Look at Procedure-Oriented Programming

Conventional programming, using high level languages such as COBOL, FORTRAN and C, is
commonly known as procedure-oriented programming (POF). In the procedure-oriented
approach, the problem is viewed as a sequence of things to be done such as reading, calculating

Prinuiples of Object-Oriented Programming —8 5

and printing. A number of functions are written to accomplish these tasks. The primary focus
is on functions, A typical program structure for procedural programming is shown in Fig. 1.4,
The technique of hierarchical decomposition has been used to specify the tasks to be completed
for solving a problem. .

L o g

F_:um:.-l%un -1 Function - 2 Fi =

Function - 4 Fi -5

L 3

Function - & Function - T Function - 8

Fig. 1.4 = Typical structure of procedure-orienibed Fm;gn_m_s s I

Procedure-oriented programming basically consists of writing a list of instructions (or
actions) for the computer to follow, and organizing these instructions into groups known as
functions. We normally use a flowchart to organize these actions and represent the flow of
control from one action to another. While we concentrate on the development of functions,
very little attention is given to the data that are being used by various functions. What
happens to the data? How are they affected by the functions that work on them?

In a multi-function program, many important data items are placed as global so that they
may be accessed by all the functions, Each function may have its own local data. Figure 1.5
shows the relationship of data and functions in a procedure-oriented program.

Global data are more vulnerable to an inadvertent change by a function. In a large program
it is very difficult to identify what data is used by which function. In case we need to revise
an external data structure, we also need to revise all functions that access the data. This
provides an opportunity for bugs to creep in.

Another serious drawback with the procedural approach is that it does not model real
world problems very well. This is because functions are .mhnn-unaﬂtad u.m.'l do not really
correspond to the elements of the problem.

6 ® Object-Oriented Programming 1eath C++

L '
" /
1"\.\ .-__..-' E-\._\H ._.-" %
I L
5 ,.-"':::\- .-:l':{"\-\.\ i
AN ;o™ X
) - ,-'f) \
A F e \'-. ¥ " |)
Function -1 Funetion -2 | Function -3 |
- E— 1 I
|
Local data | Local data Local data |
]

Fig. 1.5 + Relationship of data and functions in procedural prograntming |

Some characteristics exhibited by procedure-oriented programming are:

Emphasis is on doing things (algorithms),

Large programs are divided into smaller programs known as functions.
Most of the functions share global data.

Data move openly around the system from function to function.
Funections transform data from one form to another.

Employs top-dewn approach in program design.

I 1.4 Object-Oriented Programming Paradigm

The major motivating factor in the invention of ohject-oriented approach is to remove some
of the flaws encountered in the procedural approach. OOFP treats data as a critical element
in the program development and does not allow it to flow freely around the system. It ties
data more closely to the functions that operate on it, and protects it from accidental
modification from outside functions. OOP allows decomposition of a problem into a number
of entities called objects and then builds data and functions around these objects. The
organization of data and functions in ohject-oriented programs is shown in Fig. 1.6. The
data of an object can be accessed only by the functions associated with that object. However,
functions of one object can access the functions of other objects.

Some of the striking features of ohject-oriented programming are:

Emphasis is on data rather than procedure.
Programs are divided into what are known as objects.
® Data structures are designed such that they characterize the objects.

Principles of Object-Onented Programming e 7

Functions that operate on the data of an object are tied together in the data struc-
ture.

Data is hidden and cannot be accezsed by external functions.

Objects may communicate with each other through functions.

New data and funetions can be easily added whenever necessary.

Follows bottom-up approach in program design.

Object A Object B

Communicalion

e i

Fig. 1.6 <« Orgunizalion of dala and funchions in O0P I

Object-oriented programming is the most recent concept among programming paradigms
and still means different things to different people. It is therefore important to have a working
definition of object-oriented programming before we proceed further. We define “object-
oriented programming as an approach that provides a way of modularizing programs by
creating partitioned memory area for both data and functions that can be used as templates
for ereating copies of such modules on demand.” Thus, an object is considered to be a
partitioned area of computer memory that stores data and set of operations that can access
that data. Since the memory partitions are independent, the objects can be used in a variety
of different programs without modifications.

Il.i Basic Concepts of Object-Oriented Programming

It is necessary to understand some of the concepts used extensively in object-oriented
programming. These include:

Ohjects
® (Classes

B & Ohject-Oriented Programming with C++

Data abstraction and encapsulation
Inheritance

Polymorphism

Dynamie binding

Message passing

L B NN

We shall discuss these concepts in some detail in this section.

Objects

Objects are the basic run-time entities in an object-oriented system. They may represent a
person, a place, a bank account, a table of data or any item that the program has to handle.
They may also represent user-defined data such as vectors, time and lists. Programming
problem is analyzed in terms of objects and the nature of communication between them.
Program objects should be chosen such that they match closely with the real-world objects.
Objects take up space in the memory and have an associated address like a record in Pascal,
or a structure in C.

When a program is executed, the objects interact by sending messages to one another,
For example, if “customer”and “account” are two objects in a program, then the customer
object may send a meszage to the account ohject requesting for the bank balance. Each
object contains data, and code to manipulate the data. Objects can interact without having
to know details of each other's data or code. It 15 sufficient to know the type of message
accepted, and the type of response returned by the objects. Although different authors
represent them differently, Fig. 1.7 shows two notations that are popularly used in object-
oriented analvsis and design.

Object: STUDENT STUDENT

DATA Total 1
Mame

Date-of-birth
. Eﬁmﬂrﬂga

FURCTIONS
Total :
Avarage Display |
Display

Fig. 1.7 = Twwo weays of represeniing an object

Classes

We just mentioned that objects contain data, and eode to manipulate that data. The entire
set of data and code of an object can be made a user-defined data type with the help of a

Principles of Object-Oriented Programming # 9

class. In fact, objects are variables of the type class. Once a class has been defined, we can
create any number of objeets belonging to that class. Each object is associated with the data
of type class with which they are created. A class is thus a collection of objects of similar
type. For example, mango, apple and orange are members of the class fruit. Classes are
user-defined data types and behave like the built-in types of a programming language. The
syntax used to create an object is no different than the syntax used to create an integer
object in C. If fruit has been defined as a class, then the statement

fruit mango;

will create an object mango belonging to the class fruit.

Data Abstraction and Encapsulation

The wrapping up of data and functions into a single unit (called class) is known as
encapsulation. Data encapsulation is the most striking feature of a class. The data is not
accessible to the outside world, and only those functions which are wrapped in the class can
access it. These functions provide the interface between the object's data and the program.
This insulation of the data from direct access by the program is called data hiding or
information hiding.

Abstraction refers to the act of representing essential features without including the
background details or explanations. Classes use the concept of abstraction and are defined
as a list of abstract attributes such as size, weight and cost, and functions to operate on -
these attributes. They encapsulate all the essential properties of the objects that are to be
created, The attributes are sometimes called data members because they hold information.
The functions that operate on these data are sometimes called methods or member functions.

Since the classes use the concept of data abstraction, they are known as Abstract Data
Types (ADT).

Inheritance

Inheritance is the process by which objects of one class acquire the properties of objects of
another class. It supports the concept of hierarchical classification. For example, the bird
‘robin' is a part of the class flying bird’ which is again a part of the class 'bird’. The principle
behind this sort of division is that each derived class shares common characteristics with
the class from which it is derived as illustrated in Fig. 1.8,

In OOP, the concept of inheritance provides the idea of reusability. This means that we
can add additional features to an existing class without modifying it. This is possible by
deriving a new class from the existing one. The new class will have the combined features of
both the classes. The real appeal and power of the inheritance mechanism is that it allows
the programmer to reuse a class that is almost, but not exactly, what he wants, and to tailor
the class in such a way that it does not introduce any undesirable side-effects into the rest
of the classes.

10 & Object-Oriented Programming with C++

MNote that each sub-class defines only those features that are unique to it. Without the use
of classification, each class would have to explicitly include all of its features.

Bird
Attributes
Feathers
Lay eggs
Flying Bird Manfying Bird |
Aftributes Attribute ';_1'
Robin Swallow Penguin | Kiwi

AtribLitas Attributes Attributes | Altributes

Fig. 1.8 = Properly inheritance

Polymorphism

Polymorphizm is another important OOP concept. Polymorphism, a Greek term, means the
ability to take more than one form. An operation may exhibit different behaviours in different
instances. The behaviour depends upon the types of data used in the operation. For example,
consider the operation of addition. For two numbers, the operation will generate a sum. If
the operands are strings, then the operation would produce a third string by concatenation.
The process of making an operator to exhibit different behaviours in different instances is
known as aperator overloading.

Figure 1.9 illustrates that a single function name can be used to handle different number
and different tyvpes of arguments. This is something similar to a particular word having
several different meanings depending on the context. Using a single function name to perform
different types of tasks is known as function overloading.

Polymorphism plays an important role in allowing objects having different internal
structures to share the same external interface. This means that a general elass of operations

Copyrighted maierial

Principles of Object-Oriented Programming e 11

may be accessed in the same manner even though specific actions associated with each
operation may differ. Polymorphism is extensively used in implementing inheritance.

! Shape

]
| |

Draw ()

Cinche object Box object Triangle object

Draw (clrcie) Draw (Bax) Drmr_{‘h'imgh]

Dynamic Binding

Binding refers to the linking of a procedure call to the code to be executed in response to the
call. Dynamic binding (also known as late binding) means that the code associated with a
given procedure call is not known until the time of the call at run-time. It is associated with
polymorphism and inheritance. A function call associated with a polymorphic reference
depends on the dynamic type of that reference.

Consider the procedure “draw” in Fig. 1.9. By inheritance, every object will have this
procedure. Its algorithm is, however, unigue to each ohject and so the draw procedure will
be redefined in each class that defines the object. At run-time, the code matching the ohject
under current reference will be called.

Message Passing
An object-oriented program consists of a set of objects that communicate with each other.

The process of programming in an ohject-oriented language, therefore, involves the following
basic steps:

1. Creating classes that define objects and their behaviour,
2. Creating objects from class definitions, and
3. Establishing communication among objects.

Objects communicate with one another by sending and receiving information much the
same way as people pass messages to one another. The concept of message passing makes it
easier to talk about building systems that directly model or simulate their real-world
counterparts.

12 &

Object-Oriented Programming with C++

A message for an object is a request for execution of a procedure, and therefore will
invoke a function (procedure) in the receiving object that generates the desired result. Meszsage

passing

involves specifying the name of the object, the name of the function {message) and

the information to be sent. Example:

amployes. salary (nama);
. I ‘.
|

1
ohjact information
—e] _

massage

Objects have a life cycle. They can be created and dést.rnyed. Communication with an
object is feasible as long as it is alive.

1.6

Benefits of OOP

OOP offers several benefits to both the program designer and the user. Object-orientation
contributes to the solution of many problems associated with the development and quality
of software products. The new technology promises greater programmer productivity, better

quality
L

of software and lesser maintenance cost. The principal advantages are:

"I'I:imugh inheritance, we can eliminate redundant code and extend I;he use of exist-
ing classes.

We can build programs from the standard working modules that communicate with
one another, rather than having to start writing the code from scratch. This leads
to saving of development time and higher productivity.

The principle of data hiding helps the programmer to build secure programs that
cannot be invaded by code in other parts of the program.

It is possible to have multiple instances of an object to co-exist without any inter-
ference.

It is possible to map objects in the problem domain to those in the program.

It is easy to partition the work in a project based on objects.

The data-centered design approach enables us to capture more details of a model in
implementable form.

Object-oriented systems can be easily upgraded from small to large systems.
Message passing techniques for communication between objects makes the inter-
face deseriptions with external systems much simpler.

Software complexity can be easily managed.

While it is possible to incorporate all these features in an object-oriented system, their
importance depends on the type of the project and the preference of the programmer, There
are a number of issues that need to be tackled to reap some of the benefits stated above. For

Principles of Object-Oriented Programming - ¢ 13

instance, ohject libraries must be available for reuse. The technology is still developing and
current products may be superseded quickly. Strict controls and protocols need to be developed
if reuse is not to be compromised.

Developing a software that is easy to use makes it hard to build. It is hoped that the
object-oriented programming tools would help manage this problem.

'_1.1|r Object-Oriented Languages

Object-oriented programming is not the right of any particular language. Like structured
programming, OOF concepts can be implemented using languages such as C and Pascal.
However, programming becomes clumsy and may generate confusion when the programs
grow large. A language that is specially designed to support the OOP concepts makes it
easier to implement them.

The languages should support several of the OOF concepts to claim that they are object-
oriented. Depending upon the features they support, they can be classified into the following
two categories:

1. Object-based programming languages, and
2. Ohject-oriented programming languages.

Object-based programming is the style of programming that primarily supports
encapsulation and ohjeet identity. Major features that are required for object-based

programming are:

® Data encapsulation

® Data hiding and access mechanisms

#® Automatic initialization and clear-up of objects
® Operator overloading

Languages that support programming with objects are said to be object-based programming
languages. They do not support inheritance and dynamic binding. Ada is a typical object-
based programming language.

Object-oriented programming incorporates all of object-based programming features along
with two additional features, namely, inheritance and dynamic binding. Object-oriented
programming can therefore be characterized by the following statement:

Object-based features + inheritance + dynamic binding

Languages that support these features include C++, Smalltalk, Object Pascal and Java.
There are a large number of object-based and object-oriented programming languages.
Table 1.1 lists some popular general purpose OOP languages and their characteristics.

14 & Object-Oriented Programming with C#+

Table 1.1 Characteristics of some OOFP languages

Choracteristics Simuolae Smallialk Oljective T+ Ada Object Turbo = Eiffel Jmlul!

" o i b Pascal Pascal " ¥

Binding Both Late Bath Both Early Late Early FEarly Both |
{early or late) W ¥ v " o o W " < I
Polymorphism ¥ W W W W W ¥ v ' E
Dinta hiding v * v v ¥ « o - :
Concurrency ¥ Poar Poor Poor Dilfeult Ma B
Imheritances ¥ L ¥ + No v v
Multiple o . . . Na
Inheritance
Garbage v o’ v v No ’ v
Callection

like
Persistence Mo Fromised Mo W AGL Mo Mo
Genericity Mo Mo No ¥ . No Mo
Object Libraries o o o ¥ Not W r"

* Pure object-oriented languages
** Object-based languages
Others are extended conventional languages

As seen from Table 1.1, all languages provide for polymorphism and data hiding. However,
many of them do not provide facilities for concurrency, persistence and genericity. Eiffel,
Ada and C++ provide generic facility which is an important construct for supporting reuse.
However, persistence {a process of storing objects) is not fully supported by any of them. In
Smalltalk, though the entire current execution state can'be saved to disk, yet the individual
objects cannot be saved to an external file.

Commercially, C++ is only 10 years old, Smalltalk and Objective C 13 years old, and Java
only 5 years old. Although Simula has existed for more than two decades, it has spent most
of its life in a research environment. The field is so new, however, that it should not be

judged too harshly,

Use of a particular language depends on characteristics and requirements of an application,
organizational impact of the choice, and reuse of the existing programs. C++ has now become the
most successful, practical, general purpose OOP language, and is widely used in industry today.

I 1.8 Applications of QOP

0OP has become one of the programming buzzwords today. There appears to be a great deal
of excitement and interest among software engineers in using OOP. Applications of OOP

Principles of Object-Oriented Programming # 15

are beginning to gain importance in many areas. The most popular application of object-
oriented programming, up to now, has been in the area of user interface design such as
windows. Hundreds of windowing systems have been developed, using the OOP techniques.

Real-business systems are often much more complex and contain many more objects with
complicated attributes and methods. O0P is useful in these types of applications because it
can simplify a complex problem. The promizing areas for application of OOP include:

Real-time systems

Simulation and modeling

Object-oriented databases

Hypertext, hypermedia and expertext

Al and expert systems

Neural networks and parallel programming
Decision support and office automation systems
CIM/CAM/CAD systems

LA N N X N N N

The richness of OOP environment has enabled the software industry to improve not only
the quality of software systems but also its productivity. Object-oriented technology is
certainly changing the way the software engineers think, analyze, design and implement
systems,

p + . 2 EE SIS R A e,

Software technology has evolved through a series of phases during the last five decades.
The most popular phase till recently was procedure-oriented programming (POP).

POP employs top-down programming approach where a problem is viewed as a sequence
of tasks to be performed. A number of funetions are written to implement these tasks.

POP has two major drawbacks, viz. (1) data move freely around the program and are

therefore vulnerable to changes caused by any function in the program, and (2} it does
not model very well the real-world problems.

¢ ¢ ¢

&» Object-oriented programming (O0FP) was invented to overcome the drawbacks of the
POP. It employs the bottom-up programming approach. It treats data as a critical element
in the program development and does not allow it to flow freely around the system. It
ties data more closely to the functions that operate on it in a data structure called
class. This feature is called data encapsulation.

¢+ In OOP, a problem is considered as a collection of a number of entities called objects.
Objects are instances of classes.

& Insulation of data from direct access by the program is called data hiding.

16 & Object-Oriented Programming with C+4

&» Data abstraction refers to putting together essential features without including
background details.

& Inheritance is the process by which ohjects of one class acquire properties of objects of
another class.

% Polymorphism means one name, multiple forms. It allows us to have more than one
function with the same name in a program. It also allows overloading of operators so
that an operation can exhibit different behaviours in different instances.

& Dynamic binding means that the code associated with a given procedure is not known
until the time of the call at run-time.

& Message passing involves specifying the name of the object, the name of the function
(message) and the information to be sent.

& Object-oriented technology offers several benefits over the conventional programming
methods---the most important one being the reusability.

& Applications of OOP technology has gained importance in almost all areas of computing
including real-time business systems.

&» There are a number of languages that support ohject-oriented programming paradigm.
Popular among them are C++, Smalltalk and Java. C++ has become an industry standard
language today.

Key Terms
> Ada ¥» flowcharts
» assembly language ¥ function averloading
» bottom-up programming » functions
» Ces » garbage collection
> classes » global data
» concurrency » hierarchical classification
» data abstraction » inheritance
» data encapsulation » Java
» data hiding > late bisidifnig
» data members » local data
» dynamic binding » machine language
> early binding » member functions
> Eiffel » message passing

(Contd)

Principles of Object-Oriented Programming e 17

methods

modular programming
multiple inheritance

Objeet Pascal

u-hjﬁl:t-hannd Programming
 Objective C

‘ohject-oriented languages
 ohject-oriented programming
hﬁﬁ#ﬂ-

Ineuiewgumﬂus

1.1 What do you think are the major issues facing the software industry today?
1.2 Briefly discuss the software evolution during the period 1950 — 1990.
1.3 What is procedure-oriented programming? What are ifts main characteristics?
1.4 Discuss an approach to the development of procedure-oriented programs.
1.5 Describe how data are shared by functions in a procedure-oriented program.
1.6 What iz object-oriented programming? How is it different from the procedure-

ortented programming?
1.7 How are data and functions organized in an object-oriented program?
1.8 What are the unique advantages of an object-oriented programming paradigm?
1.9 Distinguish between the following terms:

{a) Objects and classes

(b) Data abstraction and data encapsulation

(c) Inheritance and polymorphism

(d) Dyvnamic binding and message passing
1.10 What kinds of things can become objects in OOPE
1.11 Describe inheritance as applied to QOP.
1.12 What do you mean by dynamic binding? How is it useful in OOP?
1.13 How does object-oriented approach differ from object-based approach?
1.14 List a few areas of application of OOP technology.
1.15 State whether the following statements are TRUE or FALSE.,

{a) In procedure-oriented programming, oll data are shared by all functions.

ib} The main emphasis of procedure-oriented programming is on algorithms
rather than on data.

T
i

vwwvvvvv

T
f
YYVYYYYYYYY

#

Copyrighted material

18 & Ohject-Oriented Programming with O++

ic) One of the striking features of object-oriented programming is the division of
programs into ohjects that represent real-world entities,

(d) Wrapping up of data of different types into o single unit is known os
encapsulation.

(e} One problem with OOP is that once a class is created it can never be changed.,

(fi Inheritance means the ability to reuse the data values of one ohject by

(g} Polymorphism is extensively used in implementing inheritance.

(h) Object-oriented programs are executed much faster than conventional
programs.

(i} Object-oriented systems can scale up better from small to large.

(3) Object-oriented approach cannot be used fo create databases.

Copyrighted material

hC++ |

| Beginning with C++

¥ ¥ Y Y Y Y Y Y Y YYYYYYY

Key Concepts

L with classes

C++ features

Main function

C4+ comments

Chutput operator

Input operator
Header file

Return statement
Namespace

Variables

Cascading of operators
C++ program structure
Client-server model
source file creation
Compitlation

Linking

2.1 What is C++?

C++ is an object-oriented programming
language. It was developed by Bjarne
Stroustrup at AT&T Bell Laboratories in
Murray Hill, New Jersey, USA, in the early
1980's. Stroustrup, an admirer of Simulag7
and a strong supporter of C, wanted to
combine the best of both the languages and
create a more powerful language that could
support object-oriented programming
featurez and still retain the power and
elegance of C. The result was C++.
Therefore, C++ is an extension of C with a
major addition of the class construct feature
of SimulaB7. Since the class was a major
addition to the original C language,
Stroustrup initially called the new language
'C with classes’. However, later in 1983, the
name was changed to C++. The idea of C++
comes from the C increment operator ++,
thereby suggesting that C++ iz an
augmented (incremented) version of C.

During the early 1990's the language
underwent a number of improvements and

20 @ Object-Oriented Programming with C++

changes. In November 1997, the ANSLITS0 standards committee standardized these changes
and added several new features to the language specifications.

C++ 18 a superset of C. Most of what we already know about C applies to C++ also.
Therefore, almost all C programs are also C++ programs. However, there are a few minor
differences that will prevent a C program to run under C++ compiler. We shall see these
differences later as and when they are encountered.

The most important facilities that C++ adds on to C are classes, inheritance, function
overloading, and operator overloading. These features enable creating of abstract data
types, inherit properties from existing data types and support polymorphizm, thereby
making C++ a truly ohject-oriented language.

The ohject-oriented features in C++ allow programmers to build large programs with
elarity, extensibility and ease of maintenance, incorporating the spirit and efficiency of C,
The addition of new features has transformed C from a language that currently facilitates
top-down, structured design, to one that provides bottom-up, object-oriented design.

|2i2 Applications of C++

C++ 15 a versatile language for handling very large programs. It is suitable for virtually any
programming task including development of editors, compilers, databases, communication
systems and any complex real-life application systems.

Since C++ allows us to create hierarchy-related objects, we can buildzpecial object-
oriented libraries which can be used later by many programmers,

® While C++ is able to map the real-world problem properly, the C part of C++ gives
the language the ability to get close to the machine-level details.

® C++ programs are easily maintainable and expandable. When a new feature needs
to be implemented, it is very easy to add to the existing structure of an object.

®@ i is expected that C++ will replace C as a general-purpose language in the near future,

|2.3 A Simple C++ Program

Let us begin with a simple example of a C++ program that prints a string on the screen.

finclude <iostream [/ include header file

using namespace std;

Contd)

Copyrighted material

Beginning with C++ & 21

int main{)

I!

cout << “[++ 15 better than C.\n"; [/ C++ sictement

return O;
by {f End of exomple

PROGRAM 2.1

' This simple program demonstrates several C++ features.

Program Features

Like C, the C++ program is a collection of functions. The above example contains only one
function, main(}). As usual, execution beging at main(). Every C++ program must have a
main(). C++ is a free-form language. With a few exceptions, the compiler ignores carriage
returns and white spaces. Like C, the C++ statements terminate with semicolons.

Comments

C++ introduces a new comment symbaol // (double slash). Comments start with a double
slash symbol and terminate at the end of the line. A comment may start anywhere in the
line, and whatever follows till the end of the line is ignored. Note that there is no closing
symbol.

The double slash comment is basically a single line comment. Multiline comments can be
written as follows:

[f This is on example of
i C++ program to illustrate
[/ Some of its feotures

The C comment symbols /#, */are still valid and are more suitable for multiline comments.
The following comment is allowed:

f* This is an example of
C++ program to illustrate
some of its features

We can use either or both styles in our programs. Since thiz is a book on C++, we will use
only the C++ style. However, remember that we can not insert a // style comment within the
text of a program line. For example, the double slash comment cannot be used in the manner
as shown below:

for(j=0; j=n; /* loops n times */ j++)

Copyrighted material

22 @ Object-Oriented Programming with Css

Output Operator

The only statement in Program 2.1 is an output statement. The statement

cout =< “C++ is better tham C.";

causes the string in quotation marks to be displayed on the sereen. This statement
introduces two new C++ features, cout and <<. The identifier cout (pronounced as ‘C out’) is
a predefined object that represents the standard output stream in C++. Here, the standard
output stream represents the screen. It is also possible to redirect the output to other output
devices. We shall later discuss streams in detail.

The operator << is called the insertion or put to operator. It inserts (or sends) the contents
of the variable on its right to the object on its left (Fig. 2.1).

Screan

cout CHe”

- Variable
Object Inserton opearator

Fig. 11 < Ouipui using inserfion operator

The object cout has a simple interface, If string represents a string vanable, then the
following statement will display its contents:

cout =< string;

You may recall that the operator << is the bit-wise left-shift operator and it can still be
used for this purpose, This is an example of how one operator can be used for different
purposes, depending on the context. This concept is known as operator overloading, an
important aspect of polymorphism. Operator overloading is discussed in detail in Chapter 7.

Copyrighted material

Beginning with C++ ® 23

It is important to note that we can still use printfl) for displaying an output. C++ accepts
this notation. However, we will use cout << to maintain the spirit of C++.

The iostream File
We have used the following #include directive in the program:

#include <=iostreams

This directive causes the preprocessor to add the contents of the iostream file to the
program. [t contains declarations for the identifier cout and the operator <<. Some old
versions of C++ use a header file called iostream.h. This is one of the changes introduced by
ANSI C++. (We should use instream_h if the compiler does not support ANSI C++ features.)

The header file iostream should be included at the beginning of all programs that use
inputfoutput statements. Note that the naming conventions for header files may vary. Some
implementations use iostream.hpp; yet others iostream.hxx. We must include appropriate
header files depending on the contents of the program and implementation.

Tables 2.1 and 2.2 provide lists of C++ standard library header files that may be needed
in C++ programs. The header files with .h extension are “old style” files which should be
used with old compilers. Table 2.1 also gives the version of these files that should be used
with the ANSI standard compilers,

Table 2.1 Commonly used old-style header files

3 : co met b R e
Header file Lo Contents and purpose ' ,ﬂ"i'ﬂ L
<assert.h= Contains macros and information for adding diagnostics that

aid program debugging

<ctype.he= Contains function prototypes for functions that test characters <cctype>
for certain properties, and function prototypes for functions
that can be used to convert lowercase letters to uppercase letters
and vice versa.

=flpat. h> Contains the floating-point size limits of the system, <cfloat>
<limits.h> Containg the integral size limits of the system. <climitas>
emath_h> Contains function prototypes for math library functions. srmaths>

«stdio. h> Contains function prototypes for the standard input/output <cstdio=
library functions and information used by them.

<stdlib.h= Contains function prototypes for conversion of numbers to text, <cstdlibs
text to numbers, memory allocation, random numbers, and
various other utility functions.

<gtring.h> Contains function prototypes for C-style string processing <cetring:>
funetions.

(Contd)

a

Copyrighted material

24 ®

Table 2.1 [Contd)

<time h= Emtnmn ftw:hun]J'I'ﬂ‘h:l'l-}’pﬂ u.nd typea fu-r ma.mpulatmg the
time and date.

<ipgtream.h> Contains function prototypes for the standard input and <ingtream>
standard output functions.

<iomanip.h> Contains function prototypes for the stream manipulators that <iomanips
enable formatting of streams of data.

<fstream. h> Contains function prototypes for functions that perform input <fstream:>
from files on disk and cutput to files on disk,

Object-Oriented Programming with C4++

Table 2.2 New h&uderﬁies included in ANSI C++

<limits:>

<typeinfos

E‘-untalnn l:lnmfmd fl.muhnna thnt are uned bg' mﬂ.m.r Etandard

library header files.

The header files contain classes that implement the standard
library containers. Containers store data during a program’'s
execution. We discuss these header files in Chapter 14.
Contains classes and functionz used by algorithms of the stan-
dard library.

Containg classes and functions used by the standard library to
allocate memory to the standard library containers.

Contains classes for manipulating data in the standard library
containers.

Contains functions for manipulating data in the standard library
containers,

These header files contain classes that are used for exception
handling.

Containg the definition of class string from the standard library.
Discussed in Chapter 15

Contains function protetypes for functions that perform input
from strings in memory and output to strings in memory.
Contains clazses and functions normally used by stream process.
ing to process data in the natural form for different languages
(e.g., monetary formates, forting strings, character presentation,
ete.)

Contains a class for defining the numerical data type limits on
each computer platform.,

Containg classes for run-time type identification (determining
data types at execution time).

Copyrighted maierial

Beginning with C++ & 25

Namespace

Namespace is a new concept introduced by the ANSI C++ standards committee. This defines
a scope for the identifiers that are used in a program. For using the identifiers defined in
the namespace scope we must include the using directive, like

using namespace std;

Here, std is the namespace where ANSI C++ standard class libraries are defined. All
ANSI C++ programs must include this directive. This will bring all the identifiers defined in
std to the current global scope. using and namespace are the new keywords of C++.
Namespaces are discussed in detail in Chapter 18.

Return Type of main()

In C4++, maini) returns an integer type value to the operating system. Therefore, every
main{} in C++ should end with a return{0) statement; otherwise a warning or an error
might occur. Since main() returns an integer type value, return type for main() is explicitly
gpecified as int. Note that the default return type for all functions in C++ is int. The following
main without type and return will run with a warning:

IE.-i More C+ + Statements

Let us consider a slightly more complex C4+ program. Assume that we would like to read
two numbers from the keyboard and display their average on the screen. C++ statements to
accomplish this iz shown in Program 2.2.

 AVERAGE OF THO NUMBERS

#include =iosStréeam=

using namespace std;

fnt main{)

{
float numberl, numbérg,
Sum, average;

{Conid)

Copyrighted material

26 ® Ohbject-Oriented Programming with C++

cout =< "Enter two nembers: “:
cin == numberl: /i Reads numbers
cin == number?; I from keyboord

sum = numberl + numberd;
average = sum/2;

cout << "Sum = * =< sum << "\n";
cout << "Average = " << average << *"\n";

return 0;

The output of Program 2.2 is:
Enter two numbers: 6.5 7.5

Sum = 14
Average = 7

Variables

/i prompt

PROGRAM Z.2

The program uses four variables numberl, number2, sum, and average. They are declared

as type float by the statement.

float numberl, number?, sum, average;

All variables must be declared before they are used in the program.

Input Operator
The statement

cin == numberl;

is an input statement and causes the program to wait for the user to type in a number. The
number keyed in is placed in the variable numberl. The identifier ein (pronounced ‘C in'} is
a predefined object in C++ that corresponds to the standard input stream. Here, this stream

represents the keyboard.

The operator >> is known as extraction or get from operator. It extracts (or takes) the
value from the kevboard and assigns it to the variable on itz right (Fig. 2.2). This corresponds
to the familiar scanfl) operation. Like =< , the operator >> can also be overloaded.

Copyrighted material

Beginning with C++ e 27

Object Extraction operator Variable

@® - |

1

Keyboard
Fig.22 & Input using extraction operator

Cascading of 1/0 Operators
We have used the inserfion operator << repeatedly in the last two statements for printing
results,

The statement

cout =< "Sum = * << sum << "\n";

first sends the string “Sum =" to cout and then sends the value of sum. Finally, it sends the
newline character so that the next output will be in the new line. The multiple use of << in
one statement is called cascading. When cascading an output operator, we should ensure
necessary blank spaces between different items. Using the cascading technique, the last
two statements can be combined as follows:

cout << "Sum = ¥ << sum << "\n"
=< "Average = " =< average << "\n";

This is one statement but provides two lines of output. If you want only one line of output,
the statement will be:

cout =< "Sum = * << sum =< " "
<< "Average = " =< average << "\n";

The cutput will be:
Sum = 14, Average = 7

We can also cascade input operator >> as shown below:
cin == numberl == numberZ;

The values are assigned from left to right. That is, if we key in two values, say, 10 and 20,
then 10 will be assigned to numberl and 20 to number2,

Copyrighted material

2.5 An Example with Class

One of the major features of C++ is classes. They provide a method of bindin, i A
‘and functions which operate on them, Like structures in C, ﬁm:ﬁmm
-

Copyrighted maferial

Beginning with C++ & 29
The output of Program 2.3 is:

Enter Mame: Ravinder

Enter Age: 30

MName: Ravinder
Age: 30

rnote

cin can read only one word and
therefore we cannot use names with
blank spaces.

The program defines person as a new data of
type class. The class person includes two basic
data type items and two functions to operate on
that data. These functions are called member
functions. The main program uses person to
declare variables of its type. As pointed out
earlier, class variables are known as objects. Here, p iz an object of type person. Class
ohjects are used to invoke the functions defined in that class. More about classes and objects
ia discussed in Chapter 5.

IE.E Structure of C++ Program

As it can be seen from the Program 2.3, a typical C++ program would contain four sections
as shown in Fig. 2.3. These sections may be placed in separate code files and then
compiled independently or jointly.

Include fies

Clags deckaration

bember functions definitions

Main funclion program

e — —

Fig- 2.3 < Structure of a C ++ program

It is a common practice to organize a program into three separate files. The class
declarations are placed in a header file and the definitions of member functions go into
another file, This approach enables the programmer to separate the abstract specification

Copyrighted material

30 & Ohyject-Onented Programming with C++

of the interface (class definition) from the
implementation details (member functions binaber knclons
definition). Finally, the main program that uses
the class iz placed in a third file which "includes”
the previous two files as well as any other files Server
required.

This approach is based on the concept of Class dafinition
client-server model as shown in Fig. 2.4. The
class definition including the member functions
constitute the server that provides services to
the main program known as client. The client Main function program Cliant
uses the server through the public interface of
the class.

Fig. 2.4 & The clienl-server mogdel

E;f Cn:al:ing the Source File

Like C programs, C++ programs can be created using any text editor. For example, on the
UNIX, we can use vi or ed text editor for creating and editing the source code. On the DOS
gystem, we can use edlin or any other editor available or a word processor system under
non-document mode.

Some systems such as Turbo C++ provide an integrated environment for developing and
editing programs, Appropriate manuals should be consulted for complete details.

The file name should have a proper file extension to indicate that it is a C++ program
file. C++ implementations use extensions such as .c, .C, .ce, .cpp and .cxx. Turbo C++ and
Borland C++ use .¢ for C programs and .cpp (C plus plus) for C++ programs. Zortech C++
ayetem uses .cxx while UNTX AT&T version uses .C (capital C)and .cc. The operating system
manuals should be consulted to determine the proper file name extensions to be used.

Iz.s Compiling and Linking

The process of compiling and linking again depends upon the operating system. A few popular
systems are discussed in this section.

Unix AT&T C++

The process of implementation of a C++ program under UNIX is similar to that of a C
program.We should use the "CC" (uppercase) command to compile the program. Remember,
we use lowercase "cc” for compiling C programs. The command

CC exomple.
at the UNIX prompt would compile the C++ program source code contained in the file example.C.

The compiler would produce an object file example.o and then astomatically link with the
library functions to produce an executable file. The default executable filename is a.out.

Copyrighted maierial

Beginning with C++ & 31
A program spread over multiple files can be compiled as follows:
o filel.C file?.o

The statement compiles only the file filel.C and links it with the previously compiled
file2.0 file. This is useful when only one of the files needs to be modified. The files that are
not modified need not be compiled again.

Turbo C++ and Borland C++

Turbo C++ and Borland C++ provide an integrated program development environment under
MS DOS. They provide a built-in editor and a menu bar which ineludes options such as File,
Edit, Compile and Run.

We can create and save the source files under the File option, and edit them under the
Edit option. We can then compile the program under the Compile option and execute it
under the Run option. The Run option can be used without compiling the source code. In
this case, the RUN command causes the system to compile, link and run the program in one
step. Turbo C++ being the most popular compiler, creation and execution of programs under
Turbo C++ system are discussed in detail in Appendix B.

Visnal C++

It is a Microsoft application development system for C++ that runs under Windows. Visual
C++ ig a visual programming environment in which basic program components can be selected
through menu choices, buttons, icons, and other predetermined methods. Development and
execution of C++ programs under Windows are briefly explained in Appendix C.

SUMMARY
\\ - —L/

C++ is a superset of C language.

I

C++ adds a number of object-oriented features such as objects, inheritance, function
overloading and operator overloading to C, These features enable building of programs
with clarity, extensibility and ease of maintenance.
¢ OC++ can be used to build a variety of systems such as editors, compilers, databases,
communication systems, and many more complex real-life application systems.
C++ supports interactive input and output features and introduces a new comment
syvmbaol // that ean be used for single line comments. It also supports C-style comments.
& Like C programs, execution of all C++ programs begins at main() function and ends at

return() statement. The header file iostream should be included at the beginning of
all programs that use input/output operations.

Copyrighted material

32 &

Tt ¢

Chject-Oriented Programming with C++

All ANSI C++ programs must include using namespace std directive.

A typical C++ program would contain four basic sections, namely, include files section,

class declaration section, member function section and main function sectiomn.

Tt ¢

Like C programs, C++ programs can be created using any text editor.

Most compiler systems provide an integrated environment for developing and executing

programs. Popular systems are UNIX AT&T C++, Turbo C++ and Microsoft Visual

Cw+.

#include

a.0ut

Borland C++
cascading

cin

class

client

comments

cout

edlin

extraction operator
float

free-form

get from operator
input operator
insertion operator
int

iosiream
iostream.h

¥ ¥ Y ¥ Y Y Y Y YYYYYYYYYYYY

keyboard

I Review Questions

Key Terms

maini)

member functions
ME-DOS
namespace
object

operating svstems
operator overloading
cutput operator
put‘to operator
return i)

SCTERT)

SErvVer

Simula&7

text editor

Turbo C++

Unix ATET C++
using

Visual s+
Windowsa

Zortech C++

¥ ¥ ¥ ¥y Yy ¥y Yy Y ¥YY Y YYYYYYYVYY

21 Stale whether the ﬁ.lﬂm.r.li.r:g statements are TRUE or FAILSE .
(a) Since Cis o subset of Ce+, all C ppograms will run under C4+4+ compilers.

® 33

2.2
2.3
2.4

2.5

Beginning with T+

ib) In C++, a function contained within a class is called a member function.
(c) Looking at one or fwo lines of code, we can easily recognize whether a program

is written in C or C++.

(d) In C++, it iz very easy fo add new features to the existing structure of an

object.

(e) The concept of using one operator for different purposes is known as oerator

overloading.

() The output function printfi} cannot be used in C++ programs.
Why do we need the preprocessor directive #include <iostream>

How does a main{) function in C++ differ from main() in C?

What do you think is the main advantage of the comment /[in C++ as compared

to the old C type comment?
Describe the major parts of a C++ program.

I Debugging Exercises

2.1

2.2

23

Identify the error in the following program.
#Finclude <iostream.hs=

void main()

{
int 1 = 0;
i=1+1;
cout =< 1 =< " "
fYcomment*/ /1 = 1 + 1;
cout =< i;

}

Identify the error in the following program.
#include <jostream.h>
void main()
{
short i=2500, j=3000;
cout == "i + j = " >> -(i+j);
}
What will happen when you run the following program?

#include =<iostream.h=
void main()

'i

Copyrighted material

34 e Object-Oriented Programming with C++

int =10, j=5:
int modResult=0;
' int divResult=0;

modResult = i%j;
cout << modResult =< " *;

e 5

divResult = i /modResult;
cout == divResult;
}
2.4 Find errors, if any, in the following C++ statements,
(a) cout =< "x="x;
by m=5n=1hFfe=m+n;
(£} oin >>x; >3y
(d) cout << “n"Name:" << name;
(e} eout =<"Enter value:"; cin >> x;
() FAddition* z=x+y;

I Programming Exercises

2.1 Write a program to display the following output using a single cout statement,

Maths = af
Physics =TT
Chemistry = 68

2.2 Write a program to read two numbers from the kevboard and display the larger
value on the screen.

2.3 Write a program to input an integer value from keyboard and display on screen
"WELL DONE" that many limes,

2.4 Write a program to read the values of o, b and ¢ and display the value of x, where
r=gfb-¢
Test your program for the following values:
(a) a=250,b=85c=25
(b) a=300, b=70,c=70
2.5 Write a C++ program that will ask for a temperature in Fahrenheit and display it
in Celgius,
2.6 Redo Exercise 2.5 using a class called temp and member functions.

Copyrighted material

Tokens, Expressions and \

Control Structures

Key Concepts

Tokens Seope resolution
Keywords Dereferencing
Idunt:iﬂurl Memory management

Data types Formatting the output

User-defined types Type casting
Derived types LConstruching expressions
Symbolic constanta Special assignment expressions
Declaration of variables [mplicit conversion

Initialization Operator overloading

Y O WY Y Y Y Y Y ¥ Y

Reference variables Control stroctires

Y ¥ ¥y Y Yy ¥ Y Y ¥Y¥Y¥Y

Type compatibility

3.1 Introduction

As mentioned earlier, C++ is a superset of C and therefore most constructs of C are legal in
C++ with their meaning unchanged. However, there are some exceptions and additions. In

36 @ Gb}em Oriented Programming with C++

this chapter, we shall discuss these éxﬂept.inns and additions with respect to tokens and
control structures.

IS.E Tokens

As we know, the smallest individual units in a program are known as tokens. C++ has the
following tokens:

® Keywords
® Identifiers
#® Constants
® Strings

® Operators

A Co+ program is written using these tokens, white spaces, and the syntax of the language.

Most of the C++ tokens are basically similar to the C tokens with the exception of some
additions and minor modifications,

I3.3 Keywords

Tha keywords implement specific Ca-+ language features, They are explicitly reserved identifiers
and cannot be used as names for the program variables or other user-defined program
elements.

Table 3.1 gives the complete set of C++ keywords. Many of them are comimon to both C and
C++. The ANSI C keywords are shown in boldface. Additional kevwords have been added to
the ANSI C keywords in order to enhance its features and make it an object-oriented language.
ANBSI C++ standards committee has added some more keywords to make the language more
versatile. These are shown separately. Meaning and purpose of all C++ keywords are given
in Appendix D,

I?r,ii Identifiers and Constants

Identifiers refer to the names of variables, functions, arrays, classes, ete. created by the
programmer. They are the fundamental requirement of any language. Each language has its
own rules for naming these identifiers. The following rules are common to both C and C++:

Only alphabetic characters, digits and underscores are permitted.
The name cannot start with a digit.

Uppercase and lowercase letters are distinct.

A declared keyword cannot be used as a variable name.,

Copyrighted material

Tokens, Expressions and Control Structures

Table 3.1 C++ keywords

® 37

MNote: The ANSI C keywords are shown in bold face.

asm double new switch
auto else operator template
break enum private this

case extern protected throw
catch float public try

char for register typedef
class friend return union
const goto short unsigned
continue if signed virtual
default ifline slzeol viold
delets int static volatile
do long struct while
Added by ANSI C++

hool export reinterpret_cast typename
const_cast false static_cast using
dynamic_cast mutable true wechar_t
explicit namespace typeid

A major difference between C and C++ is the limit on the length of a name. While ANSI
C recognizes only the first 32 characters in a name, ANSI C++ places no limit on its length

and, therefore, all the characters in a name are significant.

Care should be exercised while naming a variable which is being shared by more than one
file containing C and C++ programs. Some operating systems impose a restriction on the
length of such a variable name.

Conastants refer to fixed values that do not change during the execution of a program.

Like C, C++ supports several kindz of literal constants. They include integers, characters,
floating point numbers and strings. Literal constant do not have memory locations. Examples:

123 [/ decimal integer

12.34 // floating point integer
037 // octal integer

ox2 // hexadecimal integer
"C++" [/ string constant

‘A’ !/ character constant
L'ab’ // wide-character constant

The wehar_t type is a wide-character literal introduced by ANSI C++ and is intended for
character sets that cannot fit a character into a single byte. Wide-character literals begin
with the letter L.

38 & Ohjéct-Oriented Programming with C++

C++ alzo recognizes all the backslash character constants available in C.

note

C++ supports two types of string representation — the C-style character string and the
string class type introduced with Standard C++. Although the use of the string class type is
recommended, it is advisable to understand and use C-style strings in some situations, The

string class type strings support many features and are discussed in detail in
Chapter 15.

Iﬂ.i Basic Data Types

Data types in C++ can be classified under various categories as shown in Fig. 3.1.

C++ Dwta Types
/) \
User-dafined type Built-in type l Derfved type

structure array

union fumction

class poinker
anumeration refarence

Integral Type Wild Floating type
Int char | float | double

Both C and C++ compilers support all the built-in (also known as basic or fundamental)
data types. With the exception of void, the basic data types may have several modifiers
preceding them to serve the needs of various situations. The modifiers signed, unsigned,
long, and short may be applied to character and integer basic data types. However, the
maodifier long may also be applied to double. Data type representation is machine specific in
C++. Table 3.2 lists all combinations of the basic data types and modifiers along with their
gize and range for a 16-bit word machine.

Copyrighted material

Tokens, Expressions and Control. Structures -2 39

Table 3.2 Size and range of C++ basic data (ypes

Type Byte) R
char 1 —-128 to 127
unsigned char 1 0 to 255
signed char--. 1 - 128 to 127
int 2 — 32768 to 32767
unsigned int 2 0 to 65636
signed int 2 — 31768 to 32767
short int 2 — 31768 to 32767
unsigned short int a 0 to 655356
signed short int 2 -32768 to 32767
long int 4 ~2147483648 to 2147483647
signed long int 4 -214T483648 to 2147483647
unsigned long int 4 0 to 4294967285
float 4 3.4E-38 to 34E+38
double 8 1.7E-308 to 1.TE+308
long double 10 3.4E-4932 1w 1.1E+4932

ANSI C++ committee has added two more data types, bool and wehar_t. They are discussed
in Chapter 16.

The type void was introduced in ANSI C. Two normal uses of void are (1) to specify the
return type of a function when it is not returning any value, and (2) to indicate an empty
argument list to a function. Example:

void functl{void);
Another interesting use of void is in the declaration of generic pointers. Example:

void *gp; /{ ap becomes generic pointer

A generic pointer can be assigned a pointer value of any basic data type, but it may not be
dereferenced. For example,

int *ip; f! int pointer
gp = ip; /! assign int pointer to wveid pointer

are valid statements. But, the at,atemer;h
*ip = *gp;
is illegal. It would not make sense to dereference a pointer to a void value.
Assigning any peinter type to a void pointer without using a cast is allowed in both C++

and ANSI C. In ANSI C, we can also assign a void pointer to a non-void pointer without
using a cast to non-void pointer type. This is not allowed in C++. For example,

Copyrighted material

40 & Ohject-Oriented Programming with C++
void =ptrl;
char *ptrz;
ptrz = ptrl;

are all valid statements in ANSI C but not in C++. A void pointer cannot be directly assigned
to other type pointers in C++. We need to use a cast operator as shown below:

ptrz = (char *)ptrl;

3.6 User-Defined Data Types

Structures and Classes

We have used user-defined data types such as struet and union in C. While these data types
are legal in C++, some more features have been added to make them suitable for object-
oriented programming. C++ also permits us to define another user-defined data type known
as class which can be used, just like any other basic data type, to declare variables. The
class variables are known as objects, which are the central focus of object-oriented
programming. More about these data types is discussed later in Chapter 5.

Enumerated Data Type

An enumerated data type iz another user-defined type which provides a way for attaching
names to numbers, thereby increasing comprehensibility of the eode. The enum kevword
(from C) automatically enumerates a list of words by assigning them values 0,1,2, and so0 on.
This facility provides an alternative means for creating symbolic constants, The syntax of an
enum statement is similar to that of the struct statement. Examples:

enum shape{circle, square, triangle);
gnum colour{red, blue, green, yellow];
enum position{off, on};

The enumerated data types differ slightly in C++ when compared with those in ANSIC. In
C++, the tag names shape, colour, and position become new type names. By using these
tag names, we can declare new variables. Examples:

shape ellipse; /f ellipse is of type shape
colour background; /[background is of type colour

ANSI C defines the types of enums to be ints. In C++, each enumerated data type retains
its own separate tyvpe. Thiz means that C++ does not permit an int value to be automatically
converted to an enum value. Examples:

colour background = blue; Jf allowed
colour background = T7; Jf Error in C++
colour background = {colour) 7; S OK

Tokens, Expressions and Control Structures e 41
However, an enumerated value can be used in place of an int value.
int ¢ = red; {/ valid, colour type promoted to int

By default, the enumerators are assigned integer values starting with 0 for the first
enumerator, 1 for the second, and so on. We can over-ride the default by explicitly assigning
integer values to the enumerators. For example,

enum colour{red, blue=4, green=8};
enum colour{red=5, blue, green};

are valid definitions. In the first caze, red is 0 by default. In the second caze, blue is 6 and
green i 7. Note that the subsequent initialized enumerators are larger by one than their
predecessors.

C++ also permits the creation of anonymous enums (i.e., enums without tag names).
Example:

enumi{off, on};

Here, off is 0 and on is 1. These constants may be referenced in the same manner as
regular constants. Examples:

int switch 1 = off;
int switch 2 = on;

In practice, enumeration is used to define symbolic constants for a switch statement.
Example;

enum shape

{
circle,
rectangle,
triangle

K

int main{)

{

cout << "Enter shape code:";

int code;

cin >> code;

while(code »= circle && code <= triangle)

{

switch(code)

Copyrighted material

42 » Object-Oriented Programming with C++

case circle: -

break;

breaks

)

cout =< "Enter shape code:";
cin >= code;

)
cout =< "BYE \n";

return 0;

}

ANSI C permits an enum to be defined within a structure or a class, but the enum is
globally visible. In C++, an enum defined within a class (or structure) is local to that class (or
structure) only.

IS.T Derived Data Types

Arrays

The application of arrays in C++ is similar to that in C. The only exception is the way character
arrays are initialized. When initializing a character array in ANSI C, the compiler will allow
us to declare the array size as the exact length of the string constant. For instance,

char string[3] = "xyz";

is valid in ANSI C. [t assumes that the programmer intends to leave out the null character \0
in the definition. But in C++, the size should be one larger than the number of characters in
the string.

char string[4] = "xyz®; f/ 0.K. for C++

Functions

Functions have undergone major changes in C++. While some of these changes are simple,
others require a new way of thinking when organizing our programs. Many of these

Tokens, Expressions and Control Sfrictures ® 43

modifications and improvements were driven by the requirements of the object-oriented
concept of C++. Some of these were introduced to make the C++ program more reliable and
readable. All the features of C++ functions are discussed in Chapter 4.

Pointers
Pointers are declared and initialized as in C. Examples:

int *ip; ff int pointer
ip = &x: [/ address of x assigned to ip
*ip = 10; J/ 10 assigned to x through indirection

C++ adds the concept of constant pointer and pointer to a constant.
char * const ptrl = “GOOD®; // constant pointer

We cannot modify the address that ptrl is initialized to.
int const * ptr2Z = &m; // pointer to a constant

ptr2 is declared as pointer to a constant. It can point to any variable of correct type, but the
contents of what it points to cannot be changed.

We can also declare both the pointer and the variable as constants in the following way:
const char * const cp = “xyz";
This statement declares cp as a constant pointer to the string which has been declared a
constant. In this case, neither the address assigned to the pointer cp nor the contents it
points to ean be changed,

Pointers are extensively used in C++ for memory management and achieving
polymorphism.

I3.E Symbolic Constants

There are two ways of creating symbolic constants in Ca+:

® Using the qualifier const, and
® Defining a set of integer constants uzing enum keyword.

In both C and C++, any value declared as const cannot be modified by the program in
any way. However, there are some differences in implementation. In C++, we can use const in a

44 & Object-Ortented Programming with C++

constant expression, such as

const int size = 10;
char name[size];

This would be illegal in C. const allows us to create typed constants instead of having to
use #define to create constants that have no type information.

As with long and short, if we use the const modifier alone, it defaults td int. For example,

const size = 10;

means

const int size = 10;

The named constants are just like variables except that their values cannot be changed.

C++ requires a const to be initialized. ANSI C does not require an initializer; if none is
given, it initializes the const to 0.

The scoping of const values differs. A const in C++ defaults to the internal linkage and
therefore it is local to the file where it is declared. In ANSI C, eonst values are global in
nature. They are visible outside the file in which they are declared. However, they can be
made local by declaring them as statie. To give a const value an external linkage so that it
can be referenced from another file, we must explicitly define it as an extern in C++. Example:

extern const total = 100;
Another method of naming integer constants is by enumeration as under;
enum {X,Y,Z};

This defines X, ¥ and Z as integer constants with values 0, 1, and 2 respectively. This is
equivalent to:

const X = 0;
const ¥ = 1;
const I = 23

We can also assign values to X, Y, and Z explicitly. Example:
enum{X=100, ¥=50, I=200);

Such values can be any integer values. Enumerated data type has been discussed in detail
in Section 3.6.

Copyrighted material

Tokens, Expressions and Control Structures @ 45

IS-S‘ Type Compatibility

C++ is very strict with regard to type compatibility as compared to C. For instance, C++
defines int, short int, and long int as three different types. They must be cast when their
values are assigned to one another, Similarly, unsigned char, char, and signed char are
considered as different types, although each of these has a size of one byte. In C++, the types
of values must be the same for complete compatibility, or else, a cast must be applied. These
restrictions in C++ are necessary in order to support function overloading where two functions
with the same name are distinguished using the type of function arguments.

Another notable difference is the way ehar constants are stored. In C, they are stored as
ints, and therefore,

sizeof ('x')
ig equivalent to
sizeof(int)

in C. In C++, however, char iz not promoted to the size of int and therefore

sizeof('x")
equals

sizeof(char)

|3.ll] Declaration of Variables

We know that, in C, all variables must be declared before they are used in executable
statements. This is true with C++ as well. However, there iz a significant difference between
C and C++ with regard to the place of their declaration in the program. C requires all the
variables to be defined at the beginning of a scope. When we read a C program, we usually
come across a group of variable declarations at the beginning of each scope level, Their actual
use appears elsewhere in the scope, sometimes far awey from the place of declaration. Before
uging a variable, we should go back to the beginning of the program to see whether it has
been declared and, if so, of what type.

C++ allows the declaration of a variable anywhere in the scope. This means that a variable
can be declared right at the place of its first use. This makes the program much easier to
write and reduces the errors that may be caused by having to scan back and forth. It also
makes the program easier to understand because the variables are declared in the context of
their use.

Copyrighted material

46 & =, @hject-Oriented Programming with C++

The example below illustrates this point.

int main{)

{ float x; /[declaration
float sum = 0;
for{int i=1; i=5; i++) /[declaration
| cim »>> x;

sum = Sum +x;

float average; /[declaration
average = sum/(i-1);
cout =< average;

return ;

]

The only disadvantage of this style of declaration is that we cannot see all the variables
used in a scope at a glance.

|3.11 Dynamic Initialization of Variables

In C, a variable must be initialized using a constant expression, and the C compiler would fix
the initialization code at the time of compilation. C++, however, permits initialization of the
variables at run time. This is referred to as dynamic initialization. In C++, a variable can be
initialized at run time using expressions at the place of declaration. For example, the following
are valid initialization statements:

L LR

L L

int n = strien(string);

float area = 3.14159 * rad * rad;

Thus, both the declaration and the initialization of a variable can be done simultaneously at
the place where the variable is used for the first time. The following two statements in the
example of the previous section

float average; [/ declare where it is necessary
average = sum/i;

can be combined into a single statement:

Tokens, Expressions and Control Structures ® 47
float average = sum/i; [/ initiolize dynamicolly ot run time

Dynamie initialization is extensively used in object-oriented programming. We can create
exactly the type of object needed, using information that is known only at the run time.

lf-. 12 Reference Variables

C++ introduces a new kind of variable known as the reference variable. A reference variable
provides an alias (alternative name) for a previously defined variable. For example, if we
make the variable sum a reference to the variable total, then sum and total can be used
interchangeably to represent that variable. A reference variable is created as follows:

data-type & reference-name = wariable-name

Example:

flpoat total = 100;
flpat & sum = total;

total is a float type variable that has already been declared; sum is the alternative name
declared to represent the variable total. Both the variables refer to the same data object in
the memory, Now, the statements

cout =< total;
and
cout =< sum;

both print the value 100, The statement
total = total + 10;

will change the value of both total and sum to 110. Likewise, the assignment
sum = 0;

will change the value of both the variables to zero.

A reference variable must be initialized at the time of declaration. This establishes the
correspondence between the reference and the data object which it names. [t is important to
note that the initialization of a reference variable is completely different from assignment to
it.

48 » Object-Onented Programming with O+

C++ assigns additional meaning to the symbol &. Here, & is not an address operator. The
notation float & means reference to float. Other examples are:

int n[10];
int & x = n[10]; [l x is alias for n[10]
char & a = '\n'; J/ initiolize reference to o literal

The variable x is an alternative to the array element n[10]. The variable a is initialized to
the newline constant. This creates a reference to the otherwise unknown location where the

newline constant \n is stored.

The following references are also allowed:

i. int X3
int *p = Ax;:
int &m= *p;

ii. int & n = 50;

The first set of declarations causes m to refer to x which is pointed to by the pointer p and
the statement in {ii) creates an int object with value 50 and name n.

A major application of reference variables is in passing arguments to functions. Consider
the following:

—»void flint & x) /[uses reference
| = x+10; /{ % 15 incremented; so olsom
:nt main()
| int m=10;
—— f(m): {/ function caoll
}

When the function call fim) is executed, the following initialization ocours:
int & x = m;
Thus x becomes an alias of m after executing the statement

fm);

Copyrighted material

Tokens, Expressions and Control Struciures & 49

Such function calls are known as call by reference. This implementation is illustrated in
Fig. 3.2. Since the variables x and m are aliases, when the function increments x, m is also
incremented. The value of m becomes 20 after the function is executed. In traditional C, we
accomplish this operation using pointers and dereferencing technigques.

int m=10; - - T
. g oo location
w0 names
call
f{rm) . -
int & x = m;

Fig. 3.2 « Call by reference miechanism

The call by reference mechanism is useful in object-onented programming because it permits
the manipulation of objects by reference, and eliminates the copying of object parameters
back and forth. It is also impeortant to note that references can be created not only for built-
in data types but also for user-defined data types such as structures and classes. References
work wonderfully well with these user-defined data types.

|3.15 Operators in C++

C4++ has a rich set of operators. All C operators are valid in C++ also. In addition, C++ introduces
some new operators. We have already seen two such operators, namely, the insertion operator
<<, and the extraction operator >>. Other new operators are:

Hi- Scope resolution operator
i Pointer-to-member declarator

-2 Pointer-to-member operator
. Pointer-to-member operator
delete Memory release operator
end] Line feed operator

new Memory allocation operator
setw Field width operator

In addition, C++ also allows us to provide new definitions to some of the built-in operators.

That is, we can give several meanings to an operator, depending upon the types of arpuments
used. This process is known as operator overloading.

50 » Object-Oriented Programming with C++

I3.1f-i Scope Resolution Operator

Like C, C++ is also a block-structured language. Blocks and scopes can be used in constructing
programs. We know that the same variable name can be used to have different meanings in
different blocks. The scope of the variable extends from the point of its declaration till the end
of the block containing the declaration. A variable declared inside a block is said to be local to
that block. Consider the following segment of a program:

o EE R

EF @

int x = 10;

The two declarations of x refer to two different memory locations containing different
values. Statements in the second block cannot refer to the variable x declared in the first
block, and vice versa. Blocks in C++ are often nested. For example, the following style is

COMMOTL:

[-
int x = 10;

Block 2 | Block 1

Block2 is contained in block 1. Note that a declaration in an inner block hides a declaration
of the same variable in an outer block and, therefore, each declaration of x causes it to refer to

Tokens, Expressions and Control Structures e 51

a different data nl;juLWithmthamHmk the variahle = will ruhtnthlﬂlllnbut
declared therein.

In C, the global version of a variable cannot be accessed from within the inner block. C++
resolves this problem by introducing a new operator :: called the scope resolution operator. This
can be used to uncover a hidden variable. It takes the following form:

1z variable-name

This operator allows access to the global version of a variable. For example, :count
means the global version of the variable count (and not the local variable count declared in
that block). Program 3.1 illustrates this feature.

SLOPE RESOLUTION OPERATOR

The output of Program 3.1 would be:

We are in inner block
k= 20

Copyrighted material

52 @ Object-Oriented Programming with C++

m= 30
stm = 10

We are in outer block
m= 20
i:m = 10

In the above program, the variable m is declared at three places, namely, outside the main()
function, inside the main(), and inside the inner block.

nole

It is to be noted ::m will always refer to the global m. In the inner block, ::m refers to the
value 10 and not 20.

A major application of the scope resolution operator is in the classes to identify the class to
which a member function belongs. This will be dealt in detail later when the classes are
introduced.

IELIS Member Dereferencing Operators

As you know, C++ permits us to define a class containing various types of data and functions
as members. C++ also permits us to access the class members through pointers. Ih order to
achieve this, C++ provides a set of three pointer-to-member operators. Table 3.3 shows these
operators and their functions. L

Table 3.3 Member dereferencing apemmm

= AR SN RSP R £ <
AN LR B R e | R P i R
- To declare a pointer tﬂ- a m.emher of a class
- To access & membser using object name and a pointer to that member
To access a member using a pointer to the object and a pointer to that member

Further details on these operators will be meaningful only after we discuss classes, and
therefore we defer the use of member dereferencing operators until then.

3.16 Memory Management Operators

C uses malloe() and calloe() functions to allocate memory dynamically at run time. Similarly,
it uses the function free() to free dynamically allocated memory. We use dynamic allocation
techniques when it is not known in advance how much of memory space is needed. Although
C++ supports these functions, it also defines two unary operators new and delete that perform

Tokens, Expressions and Control Structures # 53

the task of allocating and freeing the memory in a better and easier way. Since these operators
manipulate memory on the free store, they are also known as free store operators.

An object can be created by using new, and destroyed by using delete, as and when
required. A data ohject created inside a block with new, will remain in existence until it is
explicitly destroyed by using delete. Thus, the lifetime of an object is directly under our
control and is unrelated to the block structure of the program.

The new operator can be used to create objects of any type. It takes the following general
form:

pointer-variable = new dota-type;

Here, pointer-variable is a pointer of type data-type. The new operator allocates sufficient
memory to hold a data object of type dafa-type and returns the address of the object. The
data-type may be any valid data type. The pointer-variable holds the address of the memory
gpace allocated. Examples:

p = new int;
q = new float;

where p is a pointer of type int and q is a pointer of type float. Here, p and q must have
already been declared as pointers of appropriate types. Alternatively, we can combine the
declaration of pointers and their assignments as follows;

int *p = new int;
float *g = new float;

Subsequently, the statements

253
1.5;

*p
q
asgign 25 to the newly created int object and 7.5 to the float object.

We can also initialize the memory using the new operator. This is done as follows:

pointer-variaoble = new doto-type(volue);

Here, value specifies the initial value. Examples:

int *p = new int(25);
float *q = new float(7.5);

54 & Object-Oriented Programming with C++

As mentioned earlier, new can be used to create a memory space for any data type
including user-defined types such as arrays, structures and classes. The general form for a

one-dimensional array is:

pointer-varighle = npew doto-typefsize];

Here, size specifies the number of elements in the array. For example, the statement
int *p = new int[10];

creates a memory space for an array of 10 integers. pl0] will refer to the first element, pl1]
to the second element, and so on.

When creating multi-dimensional arrays with new, all the array sizes must be supplied.

array ptr = new int[3] [5][4];: Jf Tegal
array _ptr = new int[m] [5][4]; [/ Tegal
array ptr = new int[3][51[1; /{ 11legal
array_ptr = new int[J[51[4]; // 11legal

The first dimension may be a variable whose value is supplied at runtime. All others
must be constants,

The application of new to class objectz will be discussed later in Chapter 6.

When a data object is no longer needed, it is destroyed to release the memory space for
reuse, The general form of its use is:

delete pointer-variable;

The pointer-variable is the pointer that points to a data ohject created with new. Examples:

delete p;
delete q;

If we want to free a dynamically allocated array, we must use the following form of
delete:

delete [size] pointer-varichle;

The zize specifies the number of elements in the array to be freed. The problem with this
form is that the programmer should remember the size of the array. Recent versions of C++

do not require the size to be specified. For example,

Tokens, Expressions and Control Structures & 55

delete []p;
will delete the entire array pointed to by p.

What happens if sufficient memory is not available for allocation? In such cases, like
malloe(), new returns a null pointer. Therefore, it may be a good idea to check for the
pﬂiﬂt&t‘ pcmdueed h}' new before using it. It 1s done as follows:

rrrrr

The new operator offers the following advantages over the function malloe().

1. It automatically computes the size of the data object. We need not use the operator
sizeof.

2. It automatically returns the correct pointer type, so that there is no need to use a

type cast.

It is possible to initialize the obhject while creating the memory space.

Like any other operator, new and delete can be overloaded.

e

3.17 Manipulators

Manipulators are operators that are used to format the data display. The most commonly
used manipulators are endl and setw.

The end]l manipulator, when used in an output statement, causes a linefeed to be inserted.
It has the same effect as using the newline character "\n". For example, the statement

cout == "m = " <= q << end]
< "'n = " 22 << gpd]
=< "p = " =< p << gndl;

would cause three lines of output, one for each variable. If we assume the values of the
variables as 25897, 14, and 175 respectively, the output will appear as follows:

56 & Object-Oriented Programming with C++

m = 5[9]7
o= (1]
P i.ﬁ

It is important to note that this form is not the ideal output. It should rather appear as
under:

Pl

m= 2597
n= 14
p= 175

Here, the numbers are right-justified. This form of output is possible only if we can specify
a common field width for all the numbers and force them to be printed right-justified. The
setw manipulator does this job. It is used as follows:

cout =< setw(5) =< sum << endl;

The manipulator setwi(5) specifies a field width 5 for printing the value of the variable
sum. This value is right-justified within the field as shown below:

| 1 [3]4]5]

Program 3.2 illustrates the use of endl and setw.

USE OF MARIPULATORS

Finclude <igstream>
#include <iomanip> // for setw

using namespace std;

int main()

i
int Basic = 950, Allowance = 95, Total = 1045;

cout =< setw{l0) =< “"Basic" << setw(10) =< Basic =< endl
<< setw(l0) =< "Allowance" << setw(l0) << Allowance << end]
<< setw(10) =< “"Total" << setw(10) << Total << endl;

return 0F

PROGRAM 3.2

Tokens, Expressions and Control Structures @ 57

Output of this program is given below:

Basic asn
Allowance 95
Total 1045

FEOE
Character strings are also printed right-justified.)

We can also write our own manipulators as follows:

#include <iostream=
ostream & symbol (ostream & output)

return output <= "\tRs";
I

The symbeol is the new manipulator which represents Rs.The identifier symbol can be
used whenever we need to display the string Rs.

|3.18 Type Cast Operator

C++ permits explicit type conversion of variables or expressions using the type cast
operator.

Traditional C casts are augmented in C++ by a function-call notation as a syntactic
alternative. The following two versions are equivalent:

(type-name) expression // C notation
type-name (expression) // C++ notation

Examples:

average = sum/{float)i; // C notation
average = sum/float(i); // C++ notation

A type-name behaves as if it is a function for converting values to a designated type. The
function-call notation usually leads to simplest expressions. However, it can be used only if
the type is an identifier. For example,

p = int * (q);

58 = Object-Oriented Programming with Ce+

is illegal. In such cases, we must use C type notation.
p = (int *) q;

Alternatively, we can use typedef to create an identifier of the required type and use it
in the functional notation.

typedef int * int_pt;
p = int_pt(q);

ANSI C++ adds the following new cast operators:

® const_cast

#® static_cast

dynamic_cast

® reinterpret_cast

Application of these operators is discussed in Chapter 16.

IS.]EI Expressions and Their Types

An expressgion is a combination of operators, constants and variables arranged as per the
rules of the language. It may also include function ealls which return values. An expression
may consist of one or more operands, and zero or more operators to produce a value.
Expressions may be of the following seven types:

Constant expressions
Integral expressions
Float expressions
Pointer expressions
Relational expressions
Logical expressions
Bitwise expressions

LR B B N N N

An expression may also use combinations of the above expressions. Such expressions are
known as compound expressions.

Constant Expressions
Constant Expressions consist of only constant values. Examples:

15
20+ 5 /2.0

I.".|

Tokens, Expressions and Control Structures @ 59

Integral Expressions

Integral Expressions are those which produce integer results after implementing all the
automatic and explicit type conversions, Examples:

m
m*n-=-5

m +* 1:|

5 + int(2.0)

where m and n are integer variables,

Float Expressions

Float Expressions are those which, after all conversions, produce floating-point results.
Examples:

X+ y
x *y /10

5 + float(10)
10.75

where x and y are floating-point variables.

Pointer Expressions
Pointer Expressions produce address values. Examples:

&m

ptr

ptr + 1
-:_lj'.!"

where m i= a variable and ptr is a pointer.

Relational Expressions
Relational Expressions yield results of type bool which takes a value true or false. Examples:

X <=y
a+h == ¢+d
mn > 100

When arithmetic expressions are used on either side of a relational operator, they will be
evaluated first and then the results compared. Relational expressions are also known as
Boolean expressions.

60 & Ohbject-Oviented Programming with C++

Logical Expressions

Logical Expressions combine two or more relational expressions and produces bool type
resultas. Examples:

a=bh &k x==10
I==1|} || 3'::5

Bitwise Expressions

Bitwize Expressions are used to manipulate data at bit level, They are basically used for
testing or shifting bits. Examples:

x << 3/ Shift three bit position to left
y == 1 Jf Shift one bit position to right

Shift operators are often used for multiplication and division by powers of two.

ANSI C++ has introduced what are termed as operator keywords that can be used as
alternative representation for operator symbaols. Operator keywords are given in Chapter 16.

I_’:Jﬂ' Special Assignment Expressions

Chained Assignment

x = (y = 10):
or
x =y = 10;
First 10 is assigned to y and then to x.

A chained statement eannot be used to initialize variables at the time of declaration, For
instance, the statement

float a = b = 12.34; I wrong
iz illegal. Thiz may be written as

float a=12.34, b=1Z.34 J[correct

Embedded Assignment
x = (y = 50) + 10;

Tokens, Expressions and Confrol Strucfures ® 61

(v = 50) iz an assignment expression known ag embeddeod assignment. Here, the value 50 is
assigned to v and then the result 50+10 = 60 iz assigned to x. This statement is
identical to

y = 504
x =y + 10;

Compound Assignment

Like C, C++ supports a compound assignment operator which is a combination of the
assignment operator with a binary arithmetic operator. For example, the simple assignment
statement

X = x + 10;
may be written as

X o+= 10;

The operator += is known as compound assignment operator or short-hand assignment
operator. The general form of the compound assignment operator is:

variablel op= variabled;
where op is a binary arithmetic operator. This means that

variablel = variablel op variable?;

IS.EI Implicit Conversions

We can mix data types in expressions. For example,
m = 5+2.75;

is a valid statement. Wherever data types are mixed in an expression, C++ performs the
conversions automatically. This process is known as implicit or automafic conversion.

When the compiler encounters an expression, it divides the expressions into sub-
expressions consisting of one operator and one or two operands. For a binary operator, if
the operands type differ, the compiler converts one of them to match with the other, using
the rule that the “smaller” type is converted to the “wider” type. For example, if one of the
operand is an int and the other is a float, the int is converted into a float because a float
18 wider than an int. The “water-fall” model shown in Fig. 3.3 illustrates this rule.

62 &

. }_ﬁ
sk

fi

—
N

unsigrad

Ohject-Onented Programming with C++

char

N

-

lang int

N

unsignad long int

~

float

~

double

r

long doubla

Fig. 3.3 <« Water-fall model of type conversion

Whenever a char or short int appears in an expression, it is converted to an int. This is
called integral widening conversion. The implicit conversion is applied only after completing
all integral widening conversions.

Table 3.4 Results of Mixed-mode Operations

LHO

short |
int
long
float
double
long double |

|
char !
I
int
int
int
long
Moat
double

short ind
int int
int int
int int
long long
float float

double | double
long

RHO - Right-hand operand
LHO = Left-hand operand

long ‘ floai double | long double
long float double long double
long float double long double
long float double long double
long | float | double long double
float float double long double
double double | double long double
long long long | long double

double

double

Tokens, Expressions and Control Structures @ 63

|3.22 Operator Overloading

As stated earlier, overloading means assigning different meanings to an operation, depending
on the context. C++ permits overloading of operators, thus allowing us to assign multiple
meanings to operators. Actually, we have used the concept of overloading in C also. For
example, the operator * when applied to a pointer variable, gives the value pointed to by the
pointer. But it is also commonly used for multiplying two numbers. The number and type of
operands decide the nature of operation to follow.

The input/output operators << and >> are good examples of operator overloading. Although
the built-in definition of the << operator is for shifting of bits, it is also used for displaying
the values of various data types. This has been made possible by the header file iostream
where a number of overloading definitions for << are included. Thus, the statement

cout =< 75.B86;
invokes the definition for displaying a double type value, and
cout =< "well done®;

invokes the definition for displaying a char value. However, none of these definitions in
tostream affect the built-in meaning of the operator.

Similarly, we can define additional meanings to other C++ operators. For example, we
can define + operator to add two structures or objects. Almost all C++ operators can be
overloaded with a few exceptions such as the member-access operators (. and .*), conditional
operator (7:), scope resolution operator (:;) and the size operator (sizeof). Definitions for
operator overloading are discussed in detail in Chapter 7.

3.23 Operator Precedence

Although C++ enables us to add multiple meanings to the operators, yet their association
and precedence remain the same. For example, the multiplication operator will continue
having higher precedence than the add operator. Table 3.5 gives the precedence and
associativity of all the C++ operators, The groups are listed in the order of decreasing
precedence. The labels prefix and postfix distinguish the uses of ++ and --. Also, the symbols
+, — ¥, and & are used as both unary and binary operators.

A complete list of ANSI C++ operators and their meanings, precedence, associativity and
use are given in Appendix E.

64 & Object-Oriented Programming with C++

Table 3.5 Operator precedence and associativity

Operator Associativity
= left to right
== . {)|] poatfix ++ postfix — - left to right
prefix ++ prefix —= - ~ | unary + unary -

unary * unary & (type) sizeof new delete right to left
- left to right
% left to right
+ = left to right
o B left to right
= o= left to right
=== left to right
& left to right
A left to right
| left to right
&& left to right
|| left to right
b left to right
=*z=/sTW=+== right to left
-r;-r;:::-}:&:“:': left to right

The unary operations assume higher precedence.

lﬂ.lti Control Structures

In C++, a large number of functions are used that pass messages, and process the data
contained in objects. A function is set up to perform a task. When the task is complex, many
different algorithms can be designed to achieve the same goal. Some are gimple to
comprehend, while others are not. Experience has also shown that the number of bugs that
occur is related to the format of the program. The format should be such that it is easy to
trace the flow of execution of statements. This would help not only in debugging but
also in the review and maintenance of the program later. One method of achieving the
objective of an aeccurate, error-resistant and maintainable code is to use one or any
combination of the following three control structures:

1. Sequence structure (straight line)
2. Selection structure (branching)
3. Loop structure (iteration or repetition)

Figure 3.4 shows how these structures are implemented using one-entry, one-exit concept,
a popular approach used in modular programming.

Tokens, Expressions and Control Structures # 65

Entry Entry

F
Action 2 ‘
N
Action 3
Action 2
Exit Exit
Aclion 3
] T
(a) Sequence (b) Selection (c) Loop

Fig.3.4 & Basic control structures |

It is important to understand that all program processing can be coded by using only
these three logic structures. The approach of using one or more of these basic control
constructs in programming is known as structured programming, an important technique
in software engineering.

Using these three basic constructs, we may represent a function structure either in
detail or in summary form as shown in Figs 3.5 (a), (b) and (c).

Like C, C++ also supports all the three basic control structures, and implements them
using various conirol statements as shown in Fig. 3.6. This shows that C++ combines the
power of structured programming with the object-oriented paradigm.

The if statement
The if statement is implemented in two forms:

@ Simple if statement
® if..else statement

Copyrighted material

Object-Oriented Programming with T4+

(b} Second level of abstraction

(&) First level of abstraction

Module A

lllllllllllllllllllllll

\[/E:Il
{c) Detailed flow chart

Fig. 35 & Different levels of abstraction |

Copyrighted material

Tokens, Expressions and Control Structures @ 67

-"j?fnnﬂ:runun
ST N

/ N\

Selection L Sequence Loop
AN | ZaN ’
£ 4 d -
f-else | | switch do-while | | while, for

Exit-conired Entry-conbral
Two way branch Multiple branch :

Fig. 3.6 <« C++ statements to implement in koo forms |

Examples:
Form 1
if(expression is true)

actionl;

action?;
action3;

Form 2

if(expression is true)

actionl;

else

{
)

action3;

actiong;

The switch statement

This is a multiple-branching statement where, based on a condition, the control is transferred
to one of the many possible points. This is implemented as follows:

68 » : Object-Oriented Programming with Ct+

switch{expression)

{
casel:

{
actionl;
|

cased:

{
. action2;

}

caseld:

{

action3;

}
default:

4

actiond;

}
)

actionS:

The do-while statement

The do-while is an extf-controlled loop. Based on a condition, the control is transferred back
to a particular point in the program. The syntax is as follows:

do

{
actionl;
|

while(condition iz true);
actionZ;

The while statement
This iz alzo a loop structure, but iz an enfry-controlled one. The syntax ig as follows:

while{condition is true)
{

actionl;

)

actiong:

The for statement

The for is an entry-entrolled loop and is used when an action is to be repeated for a
predetermined number of times. The syntax is as follows:

Tokens, Expressions and Control Structures & 69

for{initial value; test; increment)

{

actionl:
}

action?;

The syntax of the control statements in C++ is very much similar to that of C and therefore
they are implemented as and when they are required.

\ SUMMARY .

=]

¢t ¢

g ¢

C++ provides various types of tokens that include keywords, identifiers, constants,
strings, and operators.

Identifiers refer to the names of variables, functions, arrays, classes, etc.

C++ provides an additional use of void, for declaration of generic pointers.

The enumerated data types differ slightly in C++. The tag names of the enumerated
data types become new type names. That is, we can declare new variables using these
tag names.

In C4++, the size of character array should be one larger than the number of characters
in the string.

C++ adds the concept of constant pointer and pointer to constant. In case of constant
pointer we can not modify the address that the pointer is initialized to. In case of
pointer to a constant, contents of what it points to cannot be changed.

Pointers are widely used in C++ for memory management and to achieve polymorphism.

C++ provides a qualifier called const to declare named constants which are just like
variables except that their values can not be changed. A const modifier defaults to an
int.

C++ is very strict regarding type checking of variables. It does not allow to eguate
variables of two different data types. The only way to break this rule is type casting.

4» C++ allows us to declare a variable anywhere in the program, as also its initialization

at run time, using the expressions at the place of declaration.

A reference variable provides an alternative name for a previously defined variable.

Both the variables refer to the same data object in the memory. Hence, change in the
value of one will also be reflected in the value of the other variable.

A reference variable must be initialized at the time of declaration, which establishes
the correspondence between the reference and the data object that it names.

70 » Object-Onented Programming with C++

=

=]

¥ Y Y Y Y Y Y Y Y Y Y YYYYYYY

A major application of the scope resolution (2:) operator is in the classes to identify the
class to which a member function belongs.

In addition to malloe(), ealloe() and free() functions, C++ also provides two unary
operators, new and delete to perform the task of allocating and freeing the memory in a
better and easier way,

C++ also provides manipulators to format the data display. The most commonly used
manipulators are endl and setw.

C++ supports seven types of expressions, When data types are mixed in an expression,
C++ performs the conversion automatically using certain rules,

C++ also permits explicit type conversion of variables and expressions using the type cast
operators,

Like C, C++ also supports the three basic control structures namely, sequence, selection

and loop. and implementz them using various control statements such as, if, if..else,
switch, do..while, while and for.

Key Terms

array ¥ control structure

associativity » data types

automatic conversion » decimal integer

backslash character » declaration

bitwise expression *» delete

bool » dereferencing

boolean expression » derived-type

branching » do..while

call by reference » embedded assignment

calloc() > endl

character constant > entry control

chained assignment . » enumeration

class > exit control

ecompound assignment » explicit conversion

compound expression » expression

const » float expression

constant > floating point integers
> for

constant expression
' (Coned)

formatting

free store

free()

function
hexadecimal integer
identifier

if

if...else

implicit conversion
initialization
integer constant
integral expression
integral widening
iteration

keyword

literal

logical expression
loop

loop structure
malloc()
manipulator
memory

named constant
new

octal integer
operator

operator keywords
operator overloading
operator precedence
pointer

pointer expression

¥ Y Y Y VY Y Y YY Y YY Y YY Y YYYYYYYYYYYYYYY

pointer variable

l Review Questions

Y ¥ Y Y ¥ Y ¥ Y Y Y Y Y Y Y YYYYYYYYYYYYYYYYYY

Tokens, Expressions and Control Structures ® 71

reference
reference variable
relational expression
repetition

scope resolution
selection

selection structure
SEquUence

sequence structure
setw

short-hand assignment
sizeof()

straight line
string

string constant
struct

structure
structured programming
awitch

symbolic constant
token

type casting

type compatibility
typedef

union
user-defined type
variable

void

water-fall model
wchar t

while
wide-character

3.1 Enumerate the rules of naming variables in C++. How do they differ from ANSI C

rules?

T2 & Object-Oriented Programming with C++

3.2 An unsigned int can be fwice ag large as the signed int. Explain how?

3.3 Why doez C++ have type modifiers?

3.4 What are the applications of veid data type in C++¥

3.6 Can we ossign a void pointer fo an int type pointer? [If not, why? How can we
achieve this?

3.6 Desecribe, with examples, the uses of enumeration data types.

3.7 Describe the differences in the implementation of enum data type in ANSI C and
C++.

3.8 Why is an array called a derived data type?

3.9 The size of a char array that is declared to store a string should be one larger
than the number of characters in the string. Why?

3.10 The const was faken from C++ and incorporated in ANSI C, although guite
differently. Explain.

3.11 How does a constant defined by const differ from the constant defined by the
preprocessor statement $define?

3.12 In C++, a variable can be declared anywhere in the scope. What is the significance
of this feature?

3.13 What do you mean by dynamic initialization of a variable? Give an example.

3.14 What is a reference variable? Whal is its major use?

3.15 List at least four new operators added by C++ which aid OOP.

3.16 What is the application of the scope resolution operator :: in C++¢

3.17 What are the advantages of using new operator as compared to the funection
malloc()?

3.18 [Mlustrate with an example, how the setw manipulator works.
3.19 How do the following statements differ?

(a) char * const p;

(b} char const *p;

Debugging Exercises

3.1 What will happen when you execute the following code?
#include <iostream.h=
void main()

{
int i=0;

i=400*400/400;
cout =< i3
}
3.2 Identify the error in the following program.

Finclude =iostream.h=
void main()

Copyrighted material

int num[]={1,2,3,4,5,6};
num[1]==[1]num ?
]

Tokens, Expressions and Confrol Structures

cout=<"Success"

3.3 Identify the errors in the following program.

finclude <iostream.h=
void main()
{
int i=5;
while(i)
{
switch(i)
{
default:
case 4:
case 5:

break;

case 1:
continue;

case Z2:
case 3:
break;

]
i
|
}

3.4 ldentify the error in the following program.

#Finclude <iostream.h>
#define pi 3.14

int squareArea(int &);
int circleArea(int &):

void main()

{
int a=10;
cout =< sguareAreala) << "

® 73

cout=<"Error";

Copyrighted material

74 ®» Object-Oriented Programming with Cr+

cout << circleAreafa) =< " *;
cout << a << endl;

b

int squareArea(int &a)

{

return & *== a;
1

int circleArea(int &r)

{

}
3.5 Identify the error in the following program.

#include <jostream.h>
#include =malloc.h=

return r=pi *r * r;

char* allocateMemory():

void maing)

char* str;

str = allocateMemory();
cout <= sir;

delete str;

5tT' m i I:

cout =< strg

1

char* allocateMemory()

{
str = "Memory allocation test, ":
return str;

)
3.6 Find errors, if any, in the following C++ statements.

{a) long float x;

(b} char *cp = vp; / vp is a void pointer
(g} int code = three; A three is an enumerator
(d) int *p = new; / alloeate memory with new

(e) enum (green, yellow, red);

(f) int const *p = total;

(g) const int array_size;

th) for (i=1; int i<10; i++) cout << i << *\n";

Copyrighted material

Tokens, Expressions and Control Structure s 8 75

(i) int & number = 100;
(ji float *p = new int |10];
(k) int public = 1000;

1" char name[3] = “UUSA™

l Programming Exercises

3.1

3.2
3.3

3.4

3.5

3.6

Write a function using reference variables as arguments to swap the values of a
pair of integers.
Write a function that creates a vector of user-given size M using new operator.
Write a program to print the following output using for loops.

1

£

333

4444

55555
Write a program to evaluate the following invesiment equation
V=Pl1+r)\"
and print the tables which would give the value of V for various combination of
the following values of P, rand n:
P: 1000, 2000, 3000, ..., 10,000
r 0.10,0.11,0.12, ..., 020
n: 1,23 ... 10
(Hint: P is the principal amount and V is the value of money at the end of n years.
This equation can be recursively written as
V=PT+r
P=V
In other words, the value of money at the end of the first year becomes .ﬂhepn'm:ipaf
amount for the next year, and so on.
An election is contested by five candidates. The candidates are numbered 1 to 5
and the voting is done by marking the candidate number on the ballot paper.
Write a program to read the ballots and count the votes cast for each candidate
using an array variable count. In case, a number read is outside the range 1 io 5,

the ballot should be considered as a 'spoilt ballot', and the program should also
count the number of spoilt ballots.

A ericket team has the following table of batting figures for a series of ftest matches:

Sachin 8430 230 e
Saurav 4200 130 9
Rahul 3350 105 11

76 @ Object-Oriented Programming with C++

Write a program fto read the figures set out in the above form, to calculate the
batting averages and fo print out the complete table including the averages.

3.7 Write programs to evaluate the following functions to 0.00017% cocuracy.
a 8 7
X X

'[E.:' Eiﬂx:x—ﬁ+a—?_!+
(b) SUM =1+ (1/2)" + (1/37 + (1/4)" +
a 1_-1 Kﬁ
ic) coex=1- E+?_E+
3.8 Write a program to print a table of values of the function

=X
Y=
fpr x varying Iﬁ"l'.l-m 0 to 1) in steps of 0.1. The table should appear as follows.

TABLE FOR Y = EXP [-X]
X 0.1 0.2 0.3 0.4 0.5 .6 0.7 0.8 0.9

0.0
1.0

3.9 Write a program to calculate the variance and standard deviation of N numbers.

N
. 1 _.a
Variance = N E (2y = X)

[+ N
Standard Deviation = 'H%Eu' 3
i=l

_ 14
where x = N E‘xl
3.10 An electricity board charges the following rates to domestic users fo discourage
large consumption of energy:

For the first 100 units - 60F per unit
For next 200 units - 80P per unit
Beyond 300 units - S0P per unit

All users are charged a minimum of Rs. 50.00. If the total amount is more than
Rs. 300.00 then an additional surcharge of 15% is added.

Write a program to read the names of users and number of units consumed and
print out the charges with names.

Copyrighted material

| Functions in C++ |

Key Concepts

4.1 Introduction

We know that functions play an important
role in C program development. Dividing a

» Return types in main() program inte functions is one of the major
» Function prototyping principles of top-down, structured
programming. Another advantage of using
» Csll by reference functions iz that it is possible to reduce the
> (Call by value gize of & program by calling and using them
> Return by reference at different places in the program.
» Inline functions
Reeall that we have used a syntax similar
> Default arguments S .
to the following in developing C programs.
» Constant arguments
> Function overloading
void show(); /* Function declaration */
main()

i

¥ &8 F ¥

show() ; /* Function call */

'EEEE

)
void show() /* Function defimition */

78 ® Object-Oriented Programming with Cs+

/* Function body */

When the function 1s called, contrel is temastorrod tev Dhee Drst =Lcenaend e e T ion
body. The other statements in the function body are then executed and control returns to
the main program when the closing brace is encountered. C++ is no exception. Functions
continue to be the building blocks of C++ programs. In fact, C++ has added many new
features to functions to make them more reliable and flexible. Like C++ operators, a C++
function can be overloaded to make it perform different tasks depending on the arguments
passed to il Most of these modifications are aimed ot mecting the reguereaent= of ahjoe -
oriented facilities,

In this chapter, we shall briefly discuss the various new features that are added to C++
funetions and their implementation.

Iﬂiiz The Main Function

C does not specify any return type for the main() function which is the starting peoint for
the execution of a program. The definition of main() would look like this:

main()

{
i
This is perfectly valid because the main() in C doez not return any value.

[/ main progrom stotements

In C++, the main() returns a value of type int to the operating system. C++, therefore,
explicitly defines main() as matching one of the following prototypes:

int main();
int main(int argc, char * argv[]);

The functions that have a return value should use the return statement for termination.
The main() function in C++ is, therefore, defined as follows:

'{inr, main()

return 0;

Since the return type of functions is int by default, the kevword int in the main() header
is optional. Most C+4+ compilers will generate an error or warning if there is no return

Functions in Cé+ & 79

statement. Turbo C++ issues the warning

Function should return a value

and then proceeds to compile the program. It is good programming practice to actually
return a value from main().

Many operating systems test the return value (called exit value) to determine if there is
any problem. The normal convention is that an exit value of zero means the program ran
suecessfullv, while a nonzero value means there was a problem. The explicit use of a
returni()) statement will indicate that the program was successfully executed.

4.3 Function Prototyping

Function protoiyping is one of the major improvements added to C++ functions. The prototype
describes the function interface to the compiler by giving details such as the number and
type of arguments and the type of return values. With function prototyping, a femplate is
always used when declaring and defining a function. When a function is called, the compiler
uses the template to ensure that proper arguments are passed, and the return value is
treated correctly. Any violation in matching the arguments or the return types will be caught
by the compiler at the time of compilation itself. These checks and controls did not exist in
the conventional C functions.

Remember, C also uses prototyping. But it was introduced first in C++ by Stroustrup and
the succesa of this feature inspired the ANSI C committee to adopt it. However, there is a
major difference in prototyping between C and C++. While C++ makes the prototyping
essential, ANSI C makes it optional, perhaps, to preserve the compatibility with classic C.

Function prototype is a declaration sfatement in the calling program and is of the following form:

type function-name (argument-l1ist);

The argument-list contains the types and names of arguments that must be passed to the
function.

Example:
float volume(int x, float y, float z);

Note that each argument variable must be declared independently inside the parentheses.
That iz, a combined declaration like

float volume(int x, float y, z);

15 illegal.

80 » Object-Oriented Programming with C++

In a function declaration, the names of the arguments are dummy variables and therefore,
they are optional. That is, the form

float volume(int, float, float);

is acceptable at the place of declaration. At this stage, the compiler only checks for the type
of arguments when the function is called.

In general, we can either include or exclude the variable names in the argument list
of prototypes. The variable names in the prototype just act as placeholders and, therefore,

if names are used, they don't have to match the names used in the function call or function
definition.

In the function definition, names are required because the arguments must be referenced
inside the function. Example:

float volume(int a,float b.float c)

float v = a*b*c;

The function volume() can be invoked in a program as follows:
float cubel = volume(bl,wl,hl); // Function call

The variable bl, wl, and hl are known as the actual parameters which specify the
dimengions of eubel. Their types (which have been declared earlier) should match with the
tvpes declared in the prototype. Remember, the calling statement should not include type
names in the argument list.

We can also declare a function with an empfy argument list, as in the following example:
void display();

In C++, thiz means that the function does not pass any parameters. [t is identical to the
statement

void display(void);
However, in C, an empty parentheses implies any number of arguments. That is, we
'fhave foregone prototyping. A C++ function can also have an ‘open' parameter list by the use
itof ellipses in the prototype as shown below:

void do_something(...);

Copyrighted maierial

Functions in C++ ® 81

I%isi Call by Reference

In traditional C, a function call passes arguments by value. The called function creates a
new set of variables and copies the values of arguments into them. The function does not
have access to the actual variables in the calling program and can only work on the copies of
values. This mechanism is fine if the function does not need to alter the values of the original
variables in the calling program. But, there may arise situations where we would like to
change the values of variables in the calling program. For example, in bubble sort, we
compare two adjacent elements in the list and interchange their values if the first element
is greater than the second. If a function is used for bubble sort, then it should be able to alter
the values of variables in the calling function, which is not possible if the call-by-value
method is used.

Provision of the reference variables in C++ permits us to pass parameters to the functions
by reference. When we pass arguments by reference, the ‘formal’ arguments in the called
funetion become aliases to the ‘actual’ arguments in the calling function. This means that
when the function is working with its own arguments, it is actually working on the original
data. Consider the following function:

void swap(int &a,int &b) /f a and b are reference variables

{

a
b

int t = a; /f Dynamic initialization
b;
t;

}

Now, if m and n are two integer variables, then the function call
swap(m, n);

will exchange the values of m and n using their aliases (reference variables) a and b.
Reference variables have been discussed in detail in Chapter 3. In traditional C, this is
accomplished using pointers and indirection as follows:

void swapl(int *a, int *b) /* Function definition */

{

int t; '
t = *a; /* assign the value at address a to t */

*a = *h; J* put the value at b into a =/

h = t; / put the value at t into b */

}
'_I'h.is function can be called as follows:

Copyrighted material

B2 » Ohject-Oriented Programming with C++

swapl{ix, By):; /* call by passing */
J* addresses of variables */

This approach is also acceptable in C++. Note that the call-by-reference method is neaterin
its approach.

Ii.i Return by Reference

A function can also return a reference. Consider the following function:
int & max(int &x,int &y)
{

if (x = y)
return x;
else
return ¥;

}

Sinee the return type of max() is int &, the function returns reference to x or v (and not
the values). Then a function call such as max(a, b) will vield a reference to either a or b
depending on their values. This means that this function call can appear on the left-hand
side of an assignment statement. That is, the statement

max{a,b) = -1;

iz legal and assigns -1 to a if it is larger, otherwize -1 to b.

I-i.ﬁ Inline Functions

Omne of the objectives of using functions in a program is to save some memory space, which
becomes appreciable when a funetion is likely to be called many times. However, every time
a function is called, it takes a lot of extra time in executing a series of instructions for tasks
such as jumping to the function, saving registers, pushing arguments into the stack, and
returning to the calling function. When a funetion is small, a substantial percentage of
execution time may be spent in such overheads.

One solution to this problem iz to use macro definitions, popularly known as macros.
Preprocessor macros are popular in C. The major drawback with macros is that they are not
really functions and therefore, the usual error checking does not occur during compilation.

C++ has a different solution to this problem. To eliminate the cost of calls to small functions,
C++ proposes a new feature called inline function. An inline function is a function that is
expanded in line when it is invoked. That is, the compiler replaces the function call with the

Functions n C++ & B3

corresponding function code (something similar to macros expansion). The inline functions
are defined as follows:

inline function-heoder

function body
I

Exmuﬁlc:

inline double cube({double a)
{
return{a*a®a);

)
The above inline function can be invoked by statements like

¢ = cube(3.0);
d = cube(2.5+1.5);

On the execution of these statements, the values of c and d will be 27 and 64 respectively.
If the arguments are expressions such as 2.5 + 1.5, the function passes the value of the
expresgion, 4 in this ense. This makes the inline feature far superior to macros.

It is easy to make a function inline. All we need to do is to prefix the keyword inline to
the function definition. All inline functions must be defined before they are called.

We should exercize care before making a function inline. The speed benefits of inline
functions diminizh as the function grows in size. At some point the overhead of the function
call becomes amall compared to the execution of the function, and the benefitz of inline
functions may be lost. In such cases, the use of normal functions will be more meaningful.
Usually, the functions are made inline when they are small enough to be defined in one or
two lines. Example:

inline double cube(double a) {return(a*a*a);}

Remember that the inline keyword merely sends a request, not a command, to the compiler.
The compiler may ignore this request if the function definition is too long or too complicated
and compile the function as a normal function.

Some of the situations where inline expansion may not work are:

For functions returning values, if a loop, a switch, or a goto exists.
For functions not returning values, if a return statement exists.

If functions contain static variables.

If inline functions are recursive,

L

B4 ®» Ohject-Oriented Programming with C++

note

Inline expansion makes a program run faster because the overhead of a funection call and
return is eliminated. However, it makes the program to take up more memory because
the statements that define the inline function are reproduced at each point where the
function is called. So. a trade-off becomes necessary.

Program 4.1 illustrates the use of inline functions.

INLINE FUNCTIONS

#include <iostreams
using namespace std;

inline float mul(float x, float y)
i

}

return(x*y);
inline double div(double p, double g)
i
}

int main{)
{

return{p/o);

float a = 12.345;
fioat b = 9.82;

cout << mul(a,b) << "\n*;
cout << div({a,b) =< "\n";

return 03

PROGRAM 4.1

The output of program 4.1 would be

121.228
1.25713

4.7 Default Arguments

C++ allows us to call a function without specifying all itz arguments. In such cases, the
function assigns a default value to the parameter which does not have a matching argument

Functions in C++ : & B5

in the function call. Default values are specified when the function is declared. The compiler
looks at the prototype to see how many arguments a funection uses and alerts the program
for possible default values. Here is an example of a prototype (i.e. function declaration) with
default values:

float amount(float principal,int period,float rate=0.15);

The default value is specified in a manner syntactically similar to a variable initialization.
The above prototype declares a default value of 0.15 to the argument rate. A subsequent
funection call like

value = amount (5000,7); /[one argument missing

passes the value of 5000 to principal and 7 to period and then lets the function use default
value of 0.15 for rate. The call

value = amount(5000,5,0.12); /{ no missing aorgument
paszes an explicit value of 0.12 to rate.

A default argument is checked for type at the time of declaration and evaluated at the
time of call. One important point to note is that only the trailing arguments can have default
values and therefore we must add defaults from right to left. We cannot provide a default
value to a particular argument in the middle of an argument list. Some examples of function
declaration with default values are:

int mul(int 1, int j=5, int k=10); // legal
int mul(int i=5, int j); /f illegal
int mul(int i=0, int j, int k=10): /f illegal

~int mul(int i=2, int j=5, int k=10); [/ legal

Default arguments are useful in situations where some arguments always have the same
value, For instance, bank interest may remain the same for all customers for a particular
period of deposit. It also provides a greater flexibility to the programmers. A function can be
written with more parameters than are required for its most common application. Using

default arguments, a programmer can use only those arguments that are meaningful to a
particular situation. Program 4.2 illustrates the use of default arguments.

DEFAULT ARGUMENTS

#Finclude <iostream

using namespace std;

(Contd}

86 e

int main{)

{

float amount:

float value(float p, int n, float r=0.15);
void printline{char ch="*", int ien=40);:

printline(); // uses default values for

amount = value(5000.00,5); ff default

cout <= "\n Final ¥alue

printline('=');

return 0;
I
T o L I SN P T S oy P P
float value(float p, int n, float r)
{

int year = 1;
float sum = p;

while[year == n)

{

sum = sum*{1l+r);
year = year+l:

}

returni{sum) ;

]

void printline(char ch, int len)

{

&
¥

for{int i=1;
printf{"\n");

i==len; i++] printf({"%c".ch)

The output of Program 4.2 would be

EEkFh R AR AR e kA k& Ao

10056.8

Final Walue

Advantages of providing the default arguments are:

Ohject-Oriented Programming with C++

{/ prototype
/[prototype

arguments

for 3rd argument

<< amount << "\n\n®:

S use default value for 2nd argument

PROGRAM 4.2

Copyrighted material

Functions in C++ & B7

1. We can use default arguments to add new parameters to the existing functions.
2. Defaunlt arguments can be used to combine similar functions into one.

4.8 const Arguments

In C++, an argument to a function can be declared as const as shown below.

int strlen{const char *p);
int length(const string &s);

The qualifier const tells the compiler that the function should not modify the argument.
The compiler will generate an error when this condition is violated. This type of declaration
is significant only when we pass arguments by reference or pointers.

I4.9 Function Overloading

As stated earlier, overloading refers to the use of the same thing for different purposes. C++
alzo permits overloading of functions. This means that we can use the same function name
to create funetions that perform a variety of different tasks. This is known as function
polymorphism in O0P.

Using the concept of function overloading; we can design a family of functions with one
function name but with different argument lists. The function would perform different
operations depending on the argument list in the function call. The correct function to be
invoked is determined by checking the number and type of the arguments but not on the
function type. For example, an overloaded add() function handles different types of data as
ghown below:

/f Declarations

int add{int a, int b); [/ prototype 1
int add{int a, int b, int c); [/ prototype 2
double add({double x, double y); [[prototype 3
double add{int p, double q); /[prototype 4
double add({double p, int q);: /[prototype 5
/) Function calls

cout =< add(5, 10); [/ uses prototype 1
cout =< add(15, 10.0); /[uses prototype 4
cout =< add(12.5, 7.5); /[uses prototype 3
cout =< add(5, 10, 15); [/ uses prototype 2
cout << add(0.75, 5); [/ uses prototype §

B8 & Ohject-Oriented Programming with Cs++

A function call first matches the prototype having the same number and type of arguments
and then calls the appropriate function for execution. A best match must be unique. The
function selection involves the following steps:

1. The compiler first tries to find an exact match in which the types of actual argu-
ments are the same, and use that funetion.

2. If an exact match is not found, the compiler uses the integral promotions to the
actual arguments, such as,

char to int
float to double
to find a match,

3. When either of them fails, the compiler tries to use the built-in conversions (the
implicit assignment conversions) to the actnal arguments and then uses the func-
tion whose match is unigque. If the conversion is possible to have multiple matches,
then the compiler will generate an error message. Suppose we use the following
two functions;

long square(long n)
double square(double x)

A funetion ecall such as
square(10)

will cause an error because int argument ¢an be converted to either long or double,
thereby creating an ambiguous situation as to which version of square() should be
used.

4. If all of the steps fail, then the compiler will try the user-defined conversions in
combination with integral promotions and built-in conversions to find a unique

match. User-defined conversions are often used in handling class objects.

Program 4.3 illustrates function overloading.

FUNCTION OVERLOADING

J/ Function volume() is owerloaded three times
#inciude <iostream

45ing namespace std;

/{ Declarations (prototypes)

int volume{int);

double volume({double, ‘int);

long wolume{long, int, int);

(Carea)

Copyrighted material

Functions in C++ —® 89

int main{)
1
cout << volume(l0} =< "\n*
cout << volume(Z?.5,8) == in
cout << volume lﬂl:IL 15,15) =< "m

return 0;

)
/i Function definitions
int volume{int s} // cube

return{s*s®s);

double volume{double v, int h) /f cylinder
i

|
iong volume(long 1, int b, int h) // rectangular box

return{1*b®h) ;

return(3. 18519*r*r¥*h);

——

PROGRAM 4.3

The output of Program 4.3 would be:

1000
157.26
112500

Owerloading of the functions should be done with caution. We should not overlead unrelated
functions and should reserve function overloading for functions that perform closely related
tasks. Sometimes, the default arguments may be used instead of overloading. This may
reduce the number of functions to be defined.

Owerloaded functions are extensively used for handling class objects. They will be
illustrated later when the classes are discussed in the next chapter,

Iai. 10 Friend and Virtual Functions

C++ introduces two new types of functions, namely, friend function and virtual function.
They are basically introduced to handle some specific tasks related to class objects, Therefore,
discussions on these functions have been reserved until after the class ohjects are discussed.
The friend functions are discussed in Sec. 5.15 of the next chapter and virtual functions in
Sec. 9.5 of Chapter 9.

90 & Object-Ortented Programming with C++

Ii.ll Math Library Functions

The standard C++ supports many math functions that can be used for performing certain
commonly used caleulations. Most frequently used math library functions are summarized
in Table 4.1.

Table 4.1 Commonly used math library functions
TR R T et

fuig
Rounds x tn the smallest integer not less than x ceil(B.1)
= 8.0 and ceil(-8.8) = -8.0

cog(x) Trigonometric cosine of x (x in radians)
explx) Exponential function e,
fabs(x) Absolute value of x.

If x>0 then abs(x) is x

If x=0 then absix) is 0.0
If x<l then abaix) is —x

floor(x] Rounds x to the largest integer not greater than x
floor{8.2) = 8.0 and floor(-8.8 = 8.0

logix) Natural logarithm of x(base &)

log10(x) Logarithm of x(base 10)

pow(x,y) x raised to power yix¥)

sinix) Trigonometric sine of x (x in radians)

sqrtix) Square root of x

tan(x) Trigonometric tangent of x (x in radians)

noteE
| The argument variables x and ¥ are of type double and all the functions return the dﬂtﬂj

double.

Touse the math library functions, we must include the header file math.h in conventional
C++ and emath in ANSI C++.

\ SUMMARY /

& It is possible to reduce the size of program by ealling and using functions at different
places in the program.
% In C++ the main() returns a value of type int to the operating system. Since the return

type of functions is int by default, the keyword int in the main{) header is optional.
Most C++ compilers issue a warning, if there is no return statement.,

Functions in C++ * 91

¢» Function prototyping gives the compiler the details about the functions such as the

number and types of arguments and the type of return values.

% Reference variables in C++ permit us to pass parameters to the functions by reference.

¢

&

¢

8

LI

A funetion can also return a reference to a variable.

When a function is declared inline the compiler replaces the function call with the
respective function code. Normally, a small size funection is made as inline.

The compiler may ignore the inline declaration if the function declaration is too long or
too complicated and hence compile the function as a normal function.

C++ allows us to assign default values to the function parameters when the fanction is
declared. In such a case we can call a function without specifying all its arguments.
The defaults are always added from right to left.

In C+4+4, an argument to a function can be declared as const, indicating that the function
should not modify the argument.

C++ allows function overloading. That is, we can have more than one function with the

same name in our program. The compiler matches the function call with the exact
function code by checking the number and type of the arguments.

C4++ supports two new types of functions, namely friend functions and virtual functions,

Many mathematical computations can be carried out using the library functions
supported by the C++ standard library.

Key Terms
» actual arguments » dummy variables
> argument list > ellipses
» hubble sort » empty argument list
» call by reference » exit value
» call by value » formal arguments
> called function » friend functions
» calling program » function call
» calling statement » function definition
» cmath » function overloading
> const arguments » function polymorphiam
» declaration statement » function prototype
» default arguments » indirection
» default values » inline

(Cond)

..
o
L]

inline functions
MACT0S

main()

math library
math.h
overloading
pointers
polymorphism

¥ Y Y ¥ YyYV¥Y¥

I Review Questions

Obpect-Ortented Programming with Ce+

Y Y Y Y ¥Yyvy¥yvyy

prototyping
reference variable
return by reference
return statement
return tyvpe
returni)

template

virtual funetions

4.1 State whether the following statements are TRUE or FALSE,
(a) A function argument is a value returned by the function to the calling

program.

(b) When argumenis are passed by value, the function works with the original

arguments in the calling program.

(c) When a function returns a value, the entire function call can be assigned fo

a variahle.

(d) A function can return a value by reference,
(e} When an argument is passed by reference, a temporary variable is created
in the calling program to hold the argument value.

(f} It iz not necessary to specify the variable name in the function prototype.
4.2 What are the advantages of function prototypes in C++7
4.3 Describe the different styles of writing prototypes.
4.4 Find errors, iff any, in the following function prototypes.

(a) float average(x,y);
(b) int muliint a,b);

(c) int displayi...);

(d) wvoid Vect(int? &V, int & sizel;

(e) wvoid print(float data [}, size = 20;

4.5 What is the main advantage of passing arguments by reference?

4.6 When will you make a function inline? Why?

4.7 How does an inline function differ from a preprocessor macro?

4.8 When do we need to use defoult arguments in a function?

4.9 What is the significance of an empty parenthesis in a function declaration?
4.10 What do you meant by overloading of a function? When do we use this concept?

Copyrighted maierial

Functions in C++

4.11 Comment on the following function definitions:

(a) int *f()
[
intme= 1;

LB

return{im) ;
}
(b) double f()
i

return(l);
)
{c) int & £()
{
int n = 10;
returnin);

b

I Debugging Exercises

4.1 ldentify the error in the following program.
#include <ipstream,h=
int fun()

{
return 1;
}
float fun()
{
return 10.23;
void main()
{

1 1

cout =< (int)fun() =< :
cout =< (float)fun() =< ' ';

94 & Ohject-Oriented Programming with C++
4.2 Identify the error in the following program.

#include <iostream.h=>

void display{const int constl=5)
{
const int const2=5;
int arrayl[constl];
int array2[const2];
for(int i=0; i<5; i++)
{
arrayl[i] = 1;
array2[i] = 1*10;
cout =< arrayl[i] == ' ' == array2[i] =< ' ' ;

)

void main()
{
display(5);
)
4.3 Identify the error in the following program.

finclude =iostream.h=
int g¥alue=10;
void extra()

ﬂ
|

vaid main()

cout << gValue =< * 3

extra();

{
int g¥alue = 20;
cout << gV¥alue =< ' ';
cout =< : gV¥alue =< ' ';

}
4.4 Find errors, if any, in the following function definition for displaying a matrix:
void display(int A[] [], int m, int n)

{
for{i=0; i=m; i++)

Funetions in C++ ® 95

for(j=0;: j<n; j++)
cout == " " << A[i][]];
cout =< "\n";

I Programming Exercises

4.1
4.2

4.3

4.4

4.5
4.6
4.7

‘4.8

Write a function to read a malrix of size m x n from the keyboard.

Write a program to read a matrix of size m x n from the keyboard and display
the same on the screen using functions.

Rewrite the program of Exercise 4.2 to make the row parameter of the matrix as a
defaull argumendt.

The effect of a default argument can be alternatively achieved by overloading.
Discuss with an example,

Write a macro that obtains the largest of three numbers.

Redo Exercise 4.5 using inline function. Test the function using a main program.
Write a function power{) to raise a number m to a power n. The function takes a
double value for m and int value for n, and returns the result correctly. Use a
default value of 2 for n to make the function to calculate squares when this argument
is omitled. Write a main that gets the values of m and n from the user to test the
function.

Write a function that performs the same operation as that of Exercise 4.7 but
takes an int value for m. Both the funclions should have the same name. Write a
main that calls both the functions. Use the concept of function overloading.

