| Classes and Objects |

Key Concepts

Using structures

Creagting a class

Defining member functions
Creating olects

Using objects

Inline member functions
MNested member functions
Private member functions

Arrays as class members

Y Y Y Y YYYYYY

Storage of objects

5.1 Introduction

¥ Y Y Y Y YYV¥YV¥YY

Btatic data mombers

Static member functions

Using arrays of objects

Passing objects as parameters
Making functions friendly to classea
Functions returmng objects

const member functions

Pointers to members

Using dereferencing operators

Local classes

The most important feature of C++ is the “class”. Its significance is highlighted by the fact
that Stroustrup initially gave the name “C with classes™ to his new language. A class is an

Classes and Objects & 97

extension of the idea of structure used in C. It is a new way of creating and implementing a
user-defined data type. We shall discuss, in this chapter, the concept of class by first reviewing
the traditional structures found in C and then the ways in which classes ean be designed,
implemented and applied.

5.2 C Structures Revisited

We know that one of the unique features of the C language is structures. They provide a
method for packing together data of different types. A structure is a convenient tool for
handling a group of logically related data items, It is a user-defined data type with a template
that serves to define its data properties. Once the structure type has been defined, we can
create variables of that type using declarations that are similar to the built-in type
declarations. For example, consider the following declaration:

struct student

{
char name[20];
int roll_number;
float total marks;

i

The keyword struet declares student as a new data type that can hold three fields of
different data types. These fields are known as structure members or elements. The identifier
student, which is referred to as structure name or structure tag, can be used to create variables
of type student. Example:

struct student A; [/ C decloration

A ig a variable of type student and has three member variables as defined by the template.
Member variables can be accessed using the dot or period operator as follows:

strepy(A.name, “"John®);
A.roll_number = 999;

A.total _marks = 595.5;
Final total = A.total marks + 5;

Structures can have arrays, pointers or structures as members.

Limitations of C Structure

The standard C does not allow the struct data type to be treated like built-in types. For
example, consider the following structure:

Copyrighted material

98 » Ohject-Oriented Programming with C++

struct complex

flopat x;
float y;
| H
struct complex c¢l, ¢2, cl;

The complex numbers c1, ¢2, and ¢3 can easily be assigned values using the dot operator,
but we cannot add two complex numbers or subtract one from the other. For example,

cd = gl + c?;
is illegal in C.
Another important limitation of C structures is that they do not permit data hiding.

Structure members can be directly accessed by the structure variables by any function
anywhere in their scope. In other words, the structure members are public members,

Extensions to Structures

C++ supports all the features of structures as defined in C. But C++ has expanded its
capabilities further to suit its OOP philosophy. It attempts to bring the user-defined types
as close as possible to the built-in data types, and also provides a facility to hide the data
which is one of the main principles of OOP. Inheritance, a mechanism by which one type

can inherit characteristics from other types, is also supported by C++.

In C++, a structure can have both variables and functions as members, It can also declare
some of its members as 'private' so that they cannot be accessed directly by the external
functions.

In C++, the structure names are stand-alone and can be used like any other type names.
In other words, the keyword struct can be omitted in the declaration of structure variables.
For example, we can declare the student variable A as

student A; Jf C++ declarotion
Remember, this is an error in C.

C++ incorporates all these extensions in another user-defined type known as class, There
is very little syntactical difference between structures and classes in C++ and, therefore,
they can be used interchangeably with minor modifications. Since class is a specially
introduced data type in C++, most of the C++ programmers tend to use the structures for
holding only data, and classes to hold both the data and functions. Therefore, we will not
discuss structures any further.

reode

The only difference between a structure and a class in C++ is that, by default, the members
of a class are private, while, by default, the members of a structure are public.

Classes and Objects ¢ 99

|5.5 Specifying a Class

A class is a way to bind the data and its associated functions together. It allows the data
{and functions) to be hidden, if necessary, from external use. When defining a class, we are
creating a new abstract data type that can be treated like any other built-in data type.
Generally, a class specification has two parts:

1. Class declaration
2. Class function definitions

The class declaration describes the type and scope of its members. The class function
definitions describe how the class functions are implemented.

The general form of a class declaration is:

class class name
{
private:
variable declarations;
function declarations;
public:
variable declarations;
function declaration;

l:

The elass declaration is similar to a struet declaration. The keyword elass specifies,
that what follows is an abstract data of type class_name. The body of a class is enclosed
within braces and terminated by a semicolon. The class body contains the declaration of
variables and functions. These functions and variables are collectively called class members.
They are usually grouped under two sections, namely, private and public to denote which of
the members are private and which of them are public, The keywords private and public
are known as visibility labels. Note that these keywords are followed by a colon.

The class members that have been declared as private can be accessed only from within
the class. On the other hand, public members can be accessed from outside the class also,
The data hiding (using private declaration) is the key feature of ohject-oriented programming.
The use of the keyword private is optional. By default, the members of a class are private.
If both the labels are missing, then, by default, all the members are private. Such a class is
completely hidden from the outside world and does not serve any purpose.

The variables declared inside the class are known as data members and the functions are
known as member functions. Only the member functions can have access to the private data
members and private functions. However, the public members (both functions and data)
can be accessed from outside the class. This is illustrated in Fig. 5.1. The binding of data and
functions together into a single clazs-type variable ia referred to as encapsulation.

100@ Object-Oriented Programming with C++

CLASS
Mo entry 1o ___F'_I"[u?.l_El_ aea
private area | Data
% | P
| [Functions =t~
L ———— -ed]
s .
Public area .
Entry allowed to r———=_Dala__J+- |
public area L ; | ;
———--—===d | Functions |-~{---
i l
|

Fig. 5.1 = Data hiding in classes

A Simple Class Example
A typical class declaration would look like:

class item
{
int number; J/ variables decloration
float cost: /i private by defoult
public:
void getdata(int a, float b); // functions declaration
void putdata(void); [/ using prototype

1:// ends with semicolon

We usually give a class some meaningful name, such as item. This name now becomes a
new type identifier that can be used to declare instances of that elass type. The class item
contains two data members and two function members. The data members are private by
default while both the functions are public by declaration. The function getdata() can be
used to assign values to the member variables number and cost, and putdata() for displaying
their values. These functions provide the only access to the data members from outside the
class. This means that the data cannot be accessed by any function that is not 8 member of
the class item. Note that the functions are declared, not defined. Actual function definitions
will appear later in the program. The data members are usually declared as private and
the member functions as publie. Figure 5.2 shows two different notations used by the OOP
analysts to represent a class.

Creating Objects

Remember that the declaration of item as shown above does not define any objects of item
but only specifies what they will contain. Once a class has been declared, we can create
variables of that type by using the class name (like any other built-in type variable). For
example,

Classes and Objects 0101

Class : ITEM ITEM
DATA | geidatai)
nurmiber
ol
puidatal)
FURCTIONS
gﬂtdaﬂi | — |
putdatal)
(a) {b)

Fig.52 & Reprm:nmtﬁm .:y" a icligss i

item x3 [/ memory for x is creoted
creates a variable x of type item. In C++, the class variables are known as objects. Therefore,
x is called an object of type item. We may also declare more than one object in one statement.
Example:

item x, ¥, 23

The declaration of an object is similar to that of a variable of any basic type. The necessary
memory space is allocated to an object at this stage. Note that class specification, like a
structure, provides only a templafe and does not create any memory space for the objects.

Ohbjects can also be created when a class is defined by placing their names immediately
after the closing brace, as we do in the case of structures. That is to say, the definition

class item

would create the ohjects x, ¥ and z of type item. This practice is seldom followed because we
would like to declare the objects close to the place where they are used and not at the time
of class definition.

Accessing Class Members

As pointed out earlier, the private data of a class can be accessed only through the member
functions of that class. The main() cannot contain statements that access number and
cost directly. The following is the format for calling a member function:

Copyrighted material

1“2' ﬂhje:t-ﬂnented Programming with C++

object-name. function-name (actual-arguments);

For example, the function call statement
x.getdata(100,75.5);

is valid and assigns the value 100 to number and 75.5 to cost of the object x by implementing
the getdata() function. The assignments occur in the actual function. Please refer Sec. 5.4
for further details.

Similarly, the statement
x.putdata();

would display the values of data members. Remember, a member function can be invoked
only by using an object (of the same class), The statement like

getdata(100,75.5);
has no meaning. Similarly, the statement
x.number = 100;

is also illegal. Although x is an ohject of the type item to which number belongs, the number
(declared private) can be accessed only through a member function and not by the object directly.

It may be recalled that objects communicate by sending and receiving messages. This is
achieved through the member functions. For example,

x.putdata();

sends a message to the object x requesting it to display its contents.
A variable declared as public can be accessed by the objects directly. Example:

class xyz
{
int x;
int y;
public:
int z;

p.x = 0; /{ error, x is privaote
p.z = 10 J 0K, z is public

Copyrighted material

Classes and Objects €103

be avoided.

|5.4 Defining Member Functions

Member functions can be defined in two places:

reote
The use of data in this manner defeats the very idea of data hiding and therefore a.huula

® Outside the class definition.
® Inside the class definition.

It is obwvious that, irrespective of the place of definition, the function should perform the
same task. Therefore, the code for the function body would be identical in both the cases.
However, there is a subtle difference in the way the function header is defined. Both these
approaches are discussed in detail in this section.

Outside the Class Definition

Member functions that are declared inside a class have to be defined separately outside the
class. Their definitions are very much like the normal functions. They should have a function
header and a function body. Since C++ does not support the old version of function definition,
the ANSI profotype form must be used for defining the function header.

An impertant difference between a member function and a normal function is that a
member function incorporates a membership 'identity label' in the header. This ‘label’ tells
the compiler which class the function belongs to. The general form of a member function
definition is:

return-type class-name :: functiom-nome (argument declaration)

{
)

The membership label class-name :: tells the compiler that the function function-name
belongs to the class class-name. That iz, the scope of the function is restricted to the class-
name specified in the header line. The symbol :; is called the scope resolution operator.

Function body

For instance, consider the member functions getdata() and putdata() as discuszed above.
They may be coded as follows:

void item :: getdata(int a, float b)
{

number = a;

cost = b;

104 Object-Oriented Programming with C++

void item :: putdata(void)
{

cout << “"Number :" << number =< “"\n";
cout =< "Cost =2 ppst << "Yn':

Since these functions do not return any value, their return-type is void. Function
arguments are declared using the ANSI prototype.

The member functions have some special characteristics that are often used in the program
development. These characteristics are ;

® Several different classes can use the same function name. The 'membership label’
will resolve their scope.

& Member functions can access the private data of the class. A non-member funetion
cannot do so. (However, an exception to this rule is a friend function discussed later.)

® A member function can call another member function directly, without using the
dot operator.

Inside the Class Definition

Another method of defining a member function is to replace the function declaration by the
actual function definition inside the class. For example, we could define the item class as
follows:

class item

{

int number;

float cost;
public:
void getdata(int a, float b); /' declaration
// inline function
void putdata(void) ff definition inside the closs
{

cout << number << "\n";
cout << cost cz "yt

|H

When a function is defined inside a class, it is treated as an inline function. Therefore, all
the restrictions and limitations that apply to an inline function are also applicable here.
Normally, only small functions are defined inside the class definition.

|5.5 A C++ Program with Class

All the details discussed so far are implemented in Program 5.1.

Copyrighted material

Claszes and Objects 2105

CLASS IMPLEMENTATION

Finclude <iostream= 1,; b 1}, » ;
using mamespace std; ' o
class item . R e IR ; il il
{ . SN i T
int number; // private by default = = U UOEEES s
' float costs -« /7 priyate by default.. . oouw omiaihie i mmity
public: ' T Al e
void getdata(int a, float b); /| ‘prototype 'ﬁffarﬂtm,
//-to be ﬁt.ﬂw v
// Function defimed inside class .q e dt
void putdata(void) it “¢=-._-. B
{ JEEe i
cout << "number :" << number << "Xo;. - U aariiel

cout << "cost " << cost << "\n";

l
)i i A pa L .
Ilr‘_r';-i-i-lli-l-ll-l-q-ll "HT'JE'I" Ful'lttiﬂl'l DEfiﬂ'ltiﬂﬂ -I-I-ll-l--i-l-l-l-.l-ll-ll-l 5w ..'.-T. oy _1 L
void item :: getdata(int a, float b) /[use mrﬂli_lm-' '

{ i A
number = a; [/ private variables © He?
cost = b; /] directly used gt

l , r . g F

ffil-il-'l-li-l-lll-l-lli-l-ll-l-l- m‘1n Frwrm EFFREFFREFREEF R R

int main() -
l ! L i ek

item x;// creote abject x . . 430

cout << "\nobject x * << "\n"; : £
?' '_

x.getdata(100, 299.95); I mﬂ member fmm
x.putdataf(); // coll member function

item y; /[create anuth&ryﬁﬁf!:t

cout << “mﬁlﬂect y* =< "\n"; |
y.getdata(200, 175.50); L
y.putdata(); : SLEE % R K
return 0; _ o 03

J

106® Object-Oriented Programming with C++

This program features the class item. This class contains two private variables and two
public functions. The member function getdata() which has been defined outside the class

supplies values to both the variables. Note the use of statements such as

number = a;

in the function definition of getdata(). This shows that the member functions can have
direct access to private data items.

The member function putdatal) has been defined inside the class and therefore behaves
like an inline function. This function displays the values of the private variables number
and cost.

The program creates two objects, x and y in two different statements. This can be combined
in one statement.

item x, y; [/ creates a list of objects
Here is the output of Program 5.1:

object x
number = 100

cost ;799,05

obhject ¥
fumber 200
cost :175.5

For the sake of illustration we have shown one member function as inline and the other
as an 'external’ member function. Both can be defined as inline or external functions.

Iﬁ.ﬁ Making an Outside Function Inline

One of the objectives of OOP is to separate the details of implementation from the class
definition. It i8 therefore good practice to define the member functions outside the class.

We can define a member function outside the class definition and still make it inline by
just using the qualifier inline in the header line of function definition. Example:

class tem

public:
void getdata(int a, float b): Jf declaration
P

Classes and Objects 2107

inline void item :: getdata(int a, float b) [/ definition
l
number

=a;
cost = bg

li.'f Nesting of Member Functions

We just discussed that a member function of a class can be called only by an ohject of that
class using a dot operator. Howewver, there is an exception to this. A member function can be
called by using its name inside another member function of the same class. This is known
as nesting of member functions. Program 5.2 illustrates this feature,

MESTING OF MEMBER FUNCTIONS

#include <iostream=
using namespace std;

class set

{
int m, n;
publie:
void input{void);
void display{void);
int largest(void);

IF

int set :: largest({woid)
[
if{m == p)
return(m);
else
return{n);

}

void set :: input{void)

|
cout =< "Input values of m and n® << "\n";
cim == m => n;

}

void set :: display(void)
1

(Conid)

108e Object-Oriented Programming with C++

cout =< "Largest value =

<< largest() =< "\n"; J/f colling member function
b
int main()
{
set A;
A.input();
A.display();
return 03
I
PROGRAM 5.2

The output of Program 5.2 would be:

Input values of m and n
25 18
Largest value = 25

5.8 Private Member Functions

Although it is nermal practice to place all the data items in a private section and all the functions
in public, some situations may require certain functions to be hidden (like private data) from
the outside calls. Tasks such as deleting an account in a customer file, or providing increment
to an employee are events of serious consequences and therefore the functions handling
such tasks should have restricted access. We can place these functions in the private section,

A private member function can only be called by another function that iz a member of its
class, Even an object cannot invoke a private function using the dot operator. Consider a
class as defined below:

class sample
{
int m;
void read(void); // privote member function
public:
void update(void);
void write(void);

bi
If 81 is an object of sample, then

sl.read(); /{ won't work; objects cannof occess
[/ private members

Classes and Objects —o109

ig illegal. However, the function read() can be called by the function update() to update
the value of m.

void sample :: update(void)

{
)

I5.9 Arrays within a Class .

The arrays can be used as member variables in a class. The following class definition is
valid.

read(); // simple coll; no object used

const int size=10; Jf provides value for array size

class array
{
int a[size]; ff "a' ts int type arroy
public:
void setval(void);
void display{vaid);
H

The array variable al] declared as a private member of the class array can be used in
the member functions, like any other array variable. We can perform any operations on it.
For instance, in the above class definition, the member function setval() sets the values of
elements of the array al], and display() function displays the values. Similarly, we may
use other member functions to perform any other operations on the array values.

Let us consider a shopping list of items for which we place an order with a dealer every
month. The list includes details such as the code number and price of each item. We would
like to perform operations such as adding an item to the list, deleting an item from the list
and printing the total value of the order. Program 5.3 shows how thaae operations are
implemented using a class with arrays as data members.

PROCESSING SHOPPING LIST

#nclude <iostreams
using namespace std;
const m=50;

class ITEMS
(i anid)

1100————— Object-Oriented Programming with C++

Copyrighted material

Copyrighted material

112@ Object-Oriented Programming with C++

The output of Program 5.3 would be:

You can do the following; Enter appropriate number
: Add an item

: Display total value

: Delete an item

: Display all items

: Quit

PV o el ol b

What is your option?l
Enter item code :111
Enter item cost :100

You can do the following; Enter appropriate number
: Add an item

: Display total value

: Delete an item

: Display all items

: Quit

L5 I P L]

What is your option?l
Enter item code :222
Enter item cost :200

You can do the following; Enter appropriate number
1 : Add an item

Z : Display total value

3 ¢ Delete an item

4 : Display all items

5 : Quit

What is your option?l
Enter item code :333
Enter item cost :300

You can do the following; Enter appropriate number
1 : Add an item

2 1 Display total value

3 : Delete an item

4 : Display all items

& 1 Quit

What is your option?Z
Total value :600

(Contd)

Classes and Objects #2113

You canm do the following; Enter appropriate number
1 : Add an item

2 : Display total value

3 : Delete an item

4 : Display all items

5 : Quit

What is your option?3
Enter item code :222

You can do the following; Enter appropriate number
: Add an item

: Display total value

: Delete an item

: Display all items

: Quit

R e Lad B

What is your option?4

Code Price

111 100
222 0
333 300

You can do the following; Enter appropriate number
: Add an item

: Display total value

: Delete an item

: Display all items

: Quit

LN Ew Lad M3

What 1s your option?5

note

The program uses two arrays, namely itemCode[| to hold the code number of items and
itemPrice| | to hold the prices. A third data member count is used to keep a record of
items in the list. The program uses a total of four functions to implement the operations
to be performed on the list. The statement

const int m = 50;
defines the size of the array members.
The first function CNT{)} simply sets the variable count to zero. The second function

getitem() gets the item code and the item price interactively and assigns them to the array
members itemCode[count] and itemPriee[eount]. Note that inside this function count

114 e Ohject-Oriented Programming with C++

is incremented after the assignment operation i8 over, The function displaySuml) first
evaluates the total value of the order and then prints the value. The fourth function remowe(}
deletes a given item from the list. It uses the item eode to locate it in the list and sets the
price to zero indicating that the item is not ‘active' in the list. Lastly, the function
displayItems() displays all the items in the list.

The program implements all the tasks using a menu-hased user interface.

Iilﬂ Memory Allocation for Objects

We have stated that the memory space for objects is allocated when they are declared and
not when the class is specified. This statement is only partly true, Actually, the member
functions are created and placed in the memory space only once when they are defined as a
part of a class specification. Since all the objectz belonging to that class use the same member
functions, no separate space is allocated for member functions when the objects are created.
Only space for member variables is allocated separately for each ohject. Separate memory
locations for the objects are essential, because the member variables will hold different data
values for different objects. This is shown in Fig. 5.3.

Commuon for all objects
mgmber lunction 1

rremilser function 2

TGy criated Wi
funchions defined

Oibject 4 Cbject 2 Cijeecd 3
memier variable 1 muember variable 1 mambar wariable 1
| I ['
L i
mamber variabla 2 member vanable 2 rmember variabla 2

| | L L

—_—]

mgmary creabed
whan objects defined

Fig. 5.3 <= Object of memory '

Copyrighted material

Classes and Objects 2115

|5.11 Static Data Members

A data member of a class can be qualified as static. The properties of a static member
variable are similar to that of a C static variable. A static member variable has certain
special characteristics, These are :

® It is initialized to zero when the first object of its class is created. No other initial-
ization is permitted.

® Only one copy of that member is created for the entire class and is shared by all the
objects of that class, no matter how many objects are created.

It is visible only within the class, but itz lifetime is the entire program.

Static variables are normally used to maintain values common to the entire class. For
example, a static data member can be used as a counter that records the occurrences of all
the objects. Program 5.4 illustrates the use of a static data member.

STATIC CLASS MEMEER

#include <iostream=
using namespace std;

class item

static int count;
int number;
public:
void getdata(int a)
{
number = a;
count ++;

}

void getcount(vpid)

l ° I
cout =< "count: “;
cout << count =< "\n";

b
int itm.:: count;

int na{nil
{

(Contd)

116® Ohject-Oriented Programming with C++

item a, b, c; Jf count is initialized to zero
a.getcount(): /1 display count

b.getcount();

c.getcount(});

a.getdata(100); I getting date into object o
b.getdatal200); {/ getting dota into obfect b
c.getdata(300); Jf getting doto into object ¢

cout =< "After reading data® =< "\n":

a.getcount(); Jf display count
b.getcount();
c.getcount();

return 03

PROGRAM 5.4

The output of the Program 5.4 would be:

caunt:
count
count:
After r
count:
count:
count;

ading data

Ll L L 3

rode
Notice the following statement in the program:

int item :: count; Jf definition of stotic dota member

Note that the type and scope of each static member variable must be defined outside the
class definition. This iz necessary because the static data members are stored separately
rather than as a part of an object. Since they are associated with the class itself rather than
with any class object, they are alzo known as elass variables,

The statie variable count is initialized to zero when the ohjects are ereated. The count is
incremented whenever the data is read into an object. Since the data is read into objects
three times, the variable count is incremented three times. Because there iz only one copy of
count shared by all the three objects, all the three output statements cause the value 3 to
be displayed. Figure 5.4 shows how a static variable is used by the objects.

Classes and Objects *117

Object 1 Object 2 Object 3
numkber - number ' number
100 200 1 ‘ 300

#
4
e

L3
¥

count
(common o all ihree obpects)

Fig. 54 <= Sharing of a static data member

Static variables are like non-inline member functions as they are declared in a class
declaration and defined in the source file. While defining a static variable, some initial
value can also be assigned to the variable, For instance, the following definition gives count
the initial value 10.

int item :: count = 10;

|5.12 Static Member Functions

Like static member variable, we can also have static member functions. A member fanction
that iz declared static hazs the following properties:

® A static function can have access to only other static members (functions or
variables) declared in the same class.

& A static member function can be called using the<lass name (instead of its objects)
ns follows:

claoss-nagme :: function-name;

Program 5.5 illustrates the implementation of these characteristics. The statie function
showecount() displays the number of objects created till that moment. A count of number of
objects created is maintained by the statie variable count.

The function showecode() displays the code number of each object.

1180——— Object-Oriented Programming with C++

STATIC MEMBER FUNCTION
ko

Copyrighted material

Classes and Objects e119

Output of Program 5.5
count: 2
count: 3

object number: 1
object number: Z
oghject number: 3

riode
-'."'|
III";»T!:ld:\vs: that the statement

code = ++count:

is exeruted whenever seteodel) funetion is invoked and the corrent value of eount is
assigned to code. Since each object has its own copy of code, the value contained in eode

I"'..hr:t.-'e|:|nrv|3!ain::!-|:1t,a:i a unigque number of its obyject. y

Remember, the following function definition will not work:

static void showcount()

!
J

cout =< code; J[code is not static

5.13 Arrays of Objects

We know that an array can be of any data type including struet. Similarly, we can also
have arrays of variables that are of the type elass. Such variables are ealled arrays of
objects. Consider the following class definition:

class employee

{
char name[30];
float age;
public:

void getdata(void);
void putdata(void);

i

The identifier employee is a user-defined data type and can be used to create objects
that relate to different categories of the employees. Example:

employee manager[3]; /[array of manager
employee foreman[15]; /[array of foreman
employee worker[75]; /! array of worker

Copyrighted material

120® Object-Oriented Programming with C#+

The array manager contains three ohjectsimanagers), namely, manager|0], manager{1]
and manager|2], of type employee class. Similarly, the foreman array contains 15 objects
(foremen) and the worker array contains 75 objects{workers).

Since an array of objects behaves like any other array, we can use the usual array-
arcessing methods to access individual elements, and then the dot member operator to access
the member functions. For example, the statement

manager[i].putdata();

will display the data of the ith element of the array manager. That is, this statement
requests the object manager{i] to invoke the member function putaatal().

An array of objects is stored inside the memory in the same way as a multi-dimensional
array. The array manager is represented in Fig. 5.5. Note that only the space for data items
of the objects iz created. Member functions are stored separately and will be used by all the

ohjects.
|
T
} manager|d]
age
AT
manager]1]
age
name
manager]d]
Bge

Fig. 55 « Storage of data items of an object array i

Program 5.6 illustrates the use of object arrays.

L..l.’...J . T

#include <iostream=
using namespace std;

class employee
(Contd)

Classes and Ohbjects 121

{
char name[30]; [/ string as closs member
float age;
public:

void getdata(void);
void putdata(void);
B
void employee :: getdata(void)
{
cout << "Enter name: *;
cin >> name;
cout =< "Enter age: *;
cin => age;

}
void employee :: putdata(veid)
{
cout =< "Name: ® =< pame << ""'.nu;
cout << "Age: ® << age << "\n";
}

const int size=3;
int main()

{

employee manager([size];

for{int 1=0; f<size; i++)

{
cout << "\nDetails of manager® << i+l << *\n";
manager([i] .getdata();

)

cout =< "\n";

for(i=0; {<size; i++)

{
cout << "\nManager® =< 41 =< "\n";
manager[i].putdata();

return 0;

}

This being an interactive program, the input data and the program output are shown below:

Interactive input
Details of managerl
Enter name: xxx
Enter age: 45

122 Object-Oriented Programming with Ce+

Details of manager2
Enter name: yyy
Enter age: 37

Details of manager3
Enter name: zz2?

Enter age: 50

Program output

Managerl
Name: xxx
Age: 45
Manager2
Name: yyy
Age: 37
Manager3
Name: zz2
Age: 50

l’.i.l-i- Objects as Function Arguments

Like any other data type, an object may be used as a function argument. This can be done
in two ways:

A copy of the entire object is passed to the function.
® Only the address of the object is transferred to the function.

The first method is called pass-by-value. Since a copy of the object is passed to the function,
any changes made to the object inside the function do not affect the object used to call the
function. The second method is called pass-by-reference. When an address of the object is
paszed, the called function works directly on the actual object used in the call. This means
that any changes made to the object inside the funetion will reflect in the actual ohject. The
pass-by reference method i more efficient since it requires to pass only the address of the
object and not the entire ohject.

Program 5.7 illustrates the use of objects as function arguments. It performs the addition
of time in the hour and minutes format.

Classes and Objects 123

OBJECTS AS ARGUMENTS

#include <iostream>
using namespace std;

class time
{
int hours:
o int . minutes;
-publicz

void gettime(int h, int m)

{ hours = h; minutes = m; }

void puttime(void)

{

cout == hours << " hours and ";
cout << minutes << " minutes " << "\n";

} .
void sum(time, time); // decloretion with objects as arguments
I} '
void time :: sum(time tl, time t2) /I tl, t2 ore objects
{

minutes = tl.minutes + t2.minutes;

hours = minutes/60; i

minutes = minutes%60; -

hours = hours + tl.hours + t2.hours;
} .
'“'lt I!'I-lil'IH . e, ! . £
{

time T1, T2, T3;

Ti.gettime(2,45); ~ // get TI ’ s
T2.gettime(3,30); .~ /[get T2 AT

T3.5um(T1,72); // T3=T14T2 By
cout << "TL = "; Tl.puttime(); /] display T1
cout =< "T2 = "; TZ.puttime(); fi display. T2:
cout << "T3 = "; T3.puttime(); iff display T3

réturn 03 ¢

PROGRAM 5.7

124 @ Object-Oriented Programming with C++
The output of Program 5.7 would be:

Tl = 2 hours and 45 minutes

T2 = 3 hours and 30 minutes
T3 = b hours and 15 minutes

-~ rote ~
Since the member function sum() is invoked by the object T3, with the objects T1 and T2
as arguments, it can directly access the hours and minutes variables of T3. But, the
members of T1 and T2 can be aceessed only by using the dot operator (like T1.hours and

Tl.minutes). Therefore, inside the function sum(), the variables hours and minutes refer
to T3, Tl.hours and Tl.minutes refer to T1, and T2.hours and T2.minutes refer to TE,J

Figure 5.6 illustrates how the members are accessed inside the function sumi().

hours g T1.hours 2 T2.hours 3
15 45 -
minutas T1.minutes T2 minuies 20
(T1+ T2)
T3, sumi{T1, T2Z)

Fig. 5.6 & Accessing mumshers of objects within a called function I

An object can also be passed as an argument to a non-member function. However, such
functions can have access to the public member functions only through the objects passed
as arguments to it. These functions cannot have access to the private data members.

|5i15 Friendly Functions

We have been emphasizing throughout this chapter that the private members cannot be
accessed from outside the elags. That is, a non-member function cannot have an acce=s to
the private data of a class. However, there could be a situation where we would like two
classez to share a particular function. For example, cun=sider a case where two classes,
manager and scientist, have been defined. We would like to use a function income_tax()
to operate on the objects of both these classes. In such situations, C++ allows the common
function to be made friendly with both the classes, thereby allowing the function to have
access to the private data of these classes, Sueh a function need not be a member of any of
these classes.

Classes and Objects ®125

To make an outside function “friendly” to a class, we have to simply declare this function
as a friend of the class as shown below:

class ABC

friend void xyz(void); [/ decloration

The function declaration should be preceded by the keyword friend. The function is
defined elsewhere in the program like a normal C++ function. The function definition does
not use either the keyword friend or the scope operator ::. The functions that are declared
with the keyword friend are known as friend functions. A function can be declared as a
friend in any number of classes. A friend function, although not a member ﬁmctmn. has
full access rights to the private members of the class.

A friend function possesses certain special characteristics:

It is not in the scope of the class to which it has been declared as friend.

Since it is not in the scope of the class, it cannot be called using the object of that
class.

It can be invoked like a normal function without the help of any object.

Unlike member functions, it cannot access the member names directly and has to
use an object name and dot membership operator with each member name.(e.g.
Ax).

It can be declared either in the public or the private part of a class without affect-
ing its meaning.

® Usually, it has the objects as arguments.

The friend functions are often used in operator overloading which will be discussed later.

a8 &9

Program 5.8 illustrates the use of a friend function.

“LFIIEHI FUNCTION

#include <iostream>
using namespace std;

class sample
(Conid)

126® Object-Oriented Programming with C++

int a;
int b;
public:
void setvalue() {a=25: h=40; |}
friend float mean(sample s);
[
float mean({sample s)
{
return float(s.a + s.b)/2.0;
i

int main()

{
sample X ;7 object-X
iosetvaliel):
cout << "Mean value = " << mean(X) << "\n",

return 03

PROGRAM 5.8

The output of Program 5.8 would be:

Mean value = 32.5

fLHe

The friend function accesses the class varables a and b by using the dot operator and the
ohject passed to it. The function call mean(X) passes the object X by value to the friend
function. -

Member functions of one class can be friend functions of another class. In such cases,
they are defined using the scope resolution operator us shown below:

1:1‘11.:.;*un1{]|; [/ member function of X

class Y

Copyrighted material

Classes and Objects 127

F 40 E

friend int X :: funl(); Jf funl() of X
» _ ff is friend of ¥

I
The function funl() is a member of c¢lass X and a friend of class Y.

We can also declare all the member functions of one class as the friend functions of
another class. In such eases, the class is called a friend class. This can be specified as follows:

friend class X; [f all member fumctions of X are
/[friends to Z

b

Program 5.9 demonstrates how friend functions work as a bridge between the classes.

A FUNCTION FRIENDLY TO TWd CLASSES

#include <iostream=
using namespace std;
class ABC; /| Forward declaration

class XYZ
i
int x;
publtic:
void setvalue(int 1) {x = 1;}
friend void max(X¥YZ, ABC);

class ABC
{
int a;
public:
void setvalue(int i) {a = i3}
friend void max(X¥Z, ABC);

(Cantd)

Copyrighted material

128 @ Object-Oriented Programming with C++

void max(XYZ m, ABC n) S Definition of friend
'
1F{m.x =="n.a)
cout =< m.x;

else
cout =< n.a;
}
s i i e e S B A R b a1 i
int main()
(
ABC abc:
abc.setvalue(10):
KYZ wvz;
xyz.setvalue{20):
max{xyz, abc);
return 0;
}
PROGRAM 5.9
The output of Program 5.9 would be:
20
- fote ~

The function maxi) has arguments from both XYZ and ABC. When the function max() is
declared as a friend in XYZ for the first time, the compiler will not acknowledge the
presence of ABC unless its name is declared in the beginning as

class ABC;

[\Thia i known as forward’ declaration. y

As pointed out earlier, a friend function can be called by reference. In this case, local
copies of the ohjects are not made. Instead, a pointer to the address of the object is passed
and the called function directly works on the actual object used in the call.

This method can be used to alter the values of the private members of a class. Remember,
altering the values of private members is against the basic principles of data hiding. It
ghould be used only when absolutely necessary.

Program 5.10 shows how to use a common friend function to exchange the private values
of two classes. The function is called by reference.

Clazzes and Objects

SHAPPING PRIVATE DATA OF CLASSES

#include <iostream=
using namespace std;
class class 2;

class class 1
{
int valuel;
public:
void indata(int a) {valuel = a;}

void display{void) {cout << valuel << "\n";}

friend void exchange(class_1 &, class_Z &);
F

class class 2
-l .
int valueZ;
public:
void indata(int a) {value2 = a;}

void display(void) {cout =< valueZ == '\n'*} o

friend void exchange(class_1 &, class_2 &);

void exchange(class 1 & x, class 2 & y)

{
int temp = x.valuel;

x.valuel = y.value?;
y.value2 = temp;

}

int main() .

{
class 1 Cl3

class_2 C2;

Cl.indata(100);

€2.indata(200); et

- 1 Wik
i

cout << "Walues before exchange® =< "\n";
C1.display();
c2.display();:

129

\(Contd)

Copyrighted material

130® Object-Ortented Programming with C++

exchange(Cl, €2); /[swapping
cout =< *Values after exchange * =< "\n";
Cl:display();

C2.display():

return Oz

PROGRAM 5.10

The objects x and v are aliases of C1 and C2 respectively. The statements

int temp = x.valuel
x.valuel = y.valueZ;
y.value2 = temp;

directly modify the values of valuel and value2 declared in class_1 and class 2.
Here is the output of Program 5.10:

Values before exchange
100
200
Values after exchange
200

100

l!i.lﬁ Returning Objects

A function cannot only receive ohjects as arguments but also can return them. The example
in Program 5.11 illustrates how an ohject can be created (within a funetion) and returned to
another function

RETURNING OBJECTS

#include <iostreams=

using namespace std;

class complex /% #+ iy form
{
float x; {f real part
float y: [/ imoginary port
public:

void input{float real, float imag)
{ x = real; y = imag; }
(Contd)

IR R) D
TR e T
H‘{J.--ile““"‘. 3y = gl ¥ +Cd.Y

Upon execution, Program 5.1 would generate the following output:
B= ;.;l's + ,-'#'1;?

mmmmmm A and B to produce a third complex number C
and displays all the three numbers.

Copyrighted material

1320 Object-Oriented Programming with C++

|5.1'J' const Member Functions

If a member function does not alter any data in the class, then we may declare it as a const
member function as follows:

void mul (int, int) const:
double get balance() const;

The qualifier const is appended to the function prototypes (in both declaration and definition).
The compiler will generate an error message if such functions try to alter the data values.

Ii.lﬂ Pointers to Members

It is possible to take the address of a member of a class and assign it to a pointer. The
address of a member can be obtained by applying the operator & to a *fully gqualified”™ class

member name. A class member pointer can be declared using the operator ¥ with the class
name. For example, given the class

class A

{
private:
int m;
public:
void show();
be

We can define a pointer to the member m as follows:

int Az:™ ip = BA :: m;

The ip pointer created thus acts like a class member in that it must be invoked with a
class object. In the statement above, the phrase As* means “pointer-to-member of A class”.
The phrase &A:zm means the “address of the m member of A class",

Remember, the following statement is not valid:
int *ip = &m; Jf won't work
This is because m is not simply an int type data. It has meaning only when it is associated

with the class to which it belongs. The scope operator must be applied to both the pointer
and the member.

Classes and Objects 2133

The pointer ip can now be used to access the member m inside member functions (or
friend functions). Let us assume that a is an object of A declared in a member function. We
can access m using the pointer ip as follows:

cout =< a.*ip; [/ display
cout << a.m; /[same as above

MNow, look at the following code:

ap = fa; [/ ap is pointer to object o
cout << ap -* *ip; ff display m
cout =< ap ->m; // some as above

The dereferencing operator ->* is used to access a member when we use pointers to both
the ohject and the member. The dereferencing operator.® iz used when the object itself is
used with the member pointer. Note that ®*ip is used like a member name.

We can alzo design pointers to member functions which, then, can be invoked using the
dereferencing operators in the main as shown below :

{object-name .* pointer-to-member function) (10);
(pointer-to-object -»* pointer-to-member function) (10)

The precedence of () is higher than that of .* and -=¥, so the parentheses are necessary.

Program 5.12 illustrates the use of dereferencing operators to access the class members,

DEREFERENCING OPERATORS

finclude <iostream>
using namespace std;

class M
{
int x;
int y;
public:
void set xy(int a, int b)
{

X o= A

!

friend int sum(M m);

{Contd)

1340— Object-Oriented Programming with C++

b

int sum(M m)

{
int M ::* px = &M ;2 x;
int M 2% py = EM 5+ yi
M *pm = &m;
int 5§ = m,.*px + pm=>*py;
return 5;

|

int main()

{
M n;
void (M :: *pf){int,int]) = M :: set xy;
{n.*pf} (10,20} ;

cout =< "SUM = * << sum{n) =< "\n";
M *ap = hn;

{op->*pf) {30,40);

cout =< "SUM = " << sum(n) =< "\n";

return 0;

PROGRAM 5.12

The output of Program 5.12 would be:

sum = 30
sum = J0

Ii.lﬂ' Local Classes

Classes can be defined and used inside a function or a block. Such classes are called local
classes. Examples:

void test(int a) [/ function

{
class student [local class
{

..... [l class definition

Copyrighted material

Classes and Objects #2135

};.

student sl(a); /| create student object
/[use student object
}

‘Local classes can use global variables (declared above the function) and static variables
declared inside the function but cannot use automatic local variables. The global variables
should be used with the scope operator (::).

There are some restrictions in constructing local classes. They cannot have static data
members and member functions must be defined inside the local classes. Enclosing function
cannot access the private members of a local class. However, we can achieve this by declaring
the enclosing function as a friend.

\ SUMMARY /

¢» A class is an extension to the structure data type. A class can have both variables and
functions as members.

By default, members of the class are private whereas that of structure are publie.
Only the member functions can have access to the private data members and private
functions. However the public members can be accessed from outside the class.

% In C++, the class variables are called objects. With objects we can access the public
members of a class using a dot operator.

& We can define the member funetions inside or outside the class. The difference between
a member function and a normal function is that a member function uses a membership
'identity’ label in the header to indicate the class to which it belongs.

& The memory space for the objects is allocated when they are declared. Space for member
variables is allocated separately for each object, but no separate space is allocated for
member functions.

4 A data member of a class can be declared as a static and is normally used to maintain
values common to the entire class.

The static member variables must be defined outside the class.

A static member function can have access to the static members declared in the same
class and can be called using the class name.

&» C++ allows us to have arrays of objects.

§ ¢

$ ¢

Copyrighted material

13'5- Object-Oriented Programming with C++

We may use objects as function arguments.

A function declared as a friend is not in the scope of the class to which it has been
declared as friend. It has full access to the private members of the class.

A function can also return an object.

If a member function does not alter any data in the class, then we may declare it as a
const member function. The keyword const is appended to the function prototype.

It is also possible to define and use a class inside a function. Such a elass is called a local
class.

g ¢ 40

1

Key Terms

» ahstract data type » objects

» arrays of objects » pass-by-reference

» ¢lass » pass-by-value

» class declaration » period operator

» class members » private

» class variables » prototype

» gonst member functions » public

» data hiding » scope operator

»* data members » acope resolution

» dereferencing operator » static data members
~» dot operator » static member functions

» elements » static variables

» encapsulation > struct

» friend functions » structure

» inheritance » structure members

» inline functions » structure name

> local class > structure tag

> member functions » template

» nesting of member functions

I Review Questions

5.1 How do structures in C and C++ differ?
5.2 What is a class? How does it accomplish data hiding?

Classes and Objects —-e137

5.3 How does a C++ structure differ from a C++ class?
5.4 What are objects? How are they created?
5.5 How is a member function of a class defined?

5.6 Can we use the same function name for a member function of a class and an
outside function in the same program file? If ves, how are they distinguished? If
ng, give reasons.

5.7 Describe the mechanism of accessing data members and member functions in the

following cases:
(a) Inside the main program.
(b) Inside @ member function of the same class.

(e)

Inside a member function of another class.

5.8 When do we declare a member of a class staticf

5.9 What is a friend function? What are the merits and demerits of using friend
functions?

5.10 State whether the following statements are TRUE or FALSE.

(a)
(b)

Data items in a class must always be private.
A function designed as private is accessible only to member functions of that
elasgs.

(e} A function designed as public can be accessed like any other ordinary
functions.
id) Member funciions defined inside a class specifier become inline functions by
default.
(e} Classes can bring together all aspects of an entity in one place.
if) Class members are public by default.
(gl Friend functions have access to only public members of a class.
{h) An entire class ean be made a friend of another class,
(i} Functions cannot return closs objects.
(j) Data members can be initialized inside class specifier.
Debugging Exercises

5.1 Identify the error in the following program.

f#include <iostream.h>
struct Room

'I

int width;
int length;

138®

5.2

6.3

Object-Oriented Programming with C++

void setValue(int w, int 1)

{
wWwidth = w3
length = 1;
)
|H
void main()
{
Room objRoom;
objRoom.setValue(12, 1,4);
1

Identify the error in the following program.

#include <iostream.h>
class Room

{
int width, height;

void setValue(int w, int h)

{
width = w;
height = h;
!
|
void main()

{
Room objRoom;
objRoom.width = 12;:

)

Identify the error in the following program.

#Finclude <iostream.h=>
class Item
{
private:

static int count;
public:

[tem()

{

Classes and Objects #1389

COUnt++;
]
int getCount()
{
return count;
I
int* getCountAddress()
(

return count:
}
|H

int Item::coumt = [;

void main()

{
Item objIteml;
Item objltem?;

cout << objlteml.getCount() =< ' ';
cout << objltem?.getCount() =< ' ';

cout =< objlteml,getCountAddress() << ' ';
cout << objltemZ.getCountAddress() << ' ';

5.4 Ildentify the error in the following program.

#include <iostream.h>
class staticFunction
{

static int count;
public:

static vold setCount()

{

count++;

}

void displayCount()

{

cout =< count;

140@

5.5

Object-Oriented Programming with C++

.

|H

int staticFunction::count = 10;

veid main()

{
staticFunction objl;
objl.setCount (5);
staticFunction: :setCount();
objl.displayCount();

1

Identify the error in the following program.

#include <iostream.h»
class Length

{
int feet;
float inches;
public:
Length()
{
feet = 5;

inches = 6.0;

)
Length(int f, float in)

feet = f;

inches=in;
;
Length addLength{Length 1)
{

1.inches += this->inches;
1.feet += this-=feet;
if(1.inches=12)
|
1.inches-=12;
1.feet++;

}
return 1;

Copyrighted material

*141

5.6

Classes and Objects
|
int getFeet()
{
return feet;

)
float getInches()

{

return inches;
)
1
yoid main{)
{
Length ocbjlLengthl;
Length objLengthl(5, 6.5);
objLengthl = objLengthl.addLength(objLengthZ);
cout << objLengthl.getFeet() << ' ';
cout << objLengthl.getInches{) << ' ';

}
Identify the error in the following program.

#include =iostream.h=
class Room;
void Area()
{
int width, height;
class Room
{
int width, height;
public:
void setValue(int w, int h)
{

width = w;
height = h;
]
void displayvalues()
{

cout =< (float)width << ' ' << (float)height;

142e

Object-Oriented Programming with C++

)
‘H
Room objRooml ;
objRooml.setValue(12, 8);
objRooml.displayValues();
}

void main()

{

Areal():
Room objRoom?2;

}

Iﬁtgrammﬂggw

a.1

6.2

5.3
0.4

Define a class to represent a bank account. Include the following members:
Data members

1. Name of the depositor

2. Account number

3. Twpe of account

4. Balance amount in the account
Member functions

1. To assign initial values

2. To deposit an amount

3. To withdraw an amount after checking the balance

4. To display name and balance

Write a main program to test the program.

Write a class to represent a vector (a series of float values). Include member
functions to perform the following tasks:

(a) To create the vector

(b) To modify the value of a given element

ic) To multiply by a scalar value

(d) To display the vector in the form (10, 20, 30, ...)

Write a program to test your class.
Modify the class and the program of Exercise 5.1 for handling 10 customers.
Modify the class and program of Exercise 5.2 such that the program would be

able to add lwo vectors and display the resultant vector. (Note that we can pass
objects as function arguments.)

Classes and Objects 2143

5.5 Create two classes DM and DB which store the value of distances. DM stores
distances in metres and centimetres and DB in feet and inches. Write a program
that can read values for the class objects and add one object of DM with another
object of DB.

Use a friend function to carry ouf the addition operation. The object that stores
the results may be a DM ohject or DB ohject, depending on the units in which the
resulls are required.

The display should be in the format of feet and inches or metres and cenfimetres
depending on the object on display.

| Constructors and Destructors |

Y YYYYYYYYYYY

Key Concepts

Constructing ohjects
Constructors

Conatructor overloading
Default argument construetor
Copy constructor
Constructing matrix objecta
Autematic initialization
Parameterized constructors
Default constructor
Dynamic initialization
Dynamic sonstructor
Destructors

6.1 Introduction

We have seen, so far, a few examples of
clazses being implemented. In all the caszes,
we have used member functions such as
putdata() and setvalue() to provide initial
values to the private member variables. For
example, the following statement

A.input();

invokes the member function input(),
which assigns the imitial values to the data
iteme of object A. Similarly, the statement

x.getdata(100,299.95);

passes the initial values as arguments to
the function getdata(), where these values
are assigned to the private variables of
object x. All these "function call' statements
are used with the appropriate ohjects that

hawve already been created. These functions cannot be used to initialige the member variables
at the time of creation of their ulyncta

Constructors and Destructors # 145

Providing the initial values as described above does not conform with the philosophy of
C++ language. We stated earlier that one of the aims of C++ is to create user-defined data
types such as class, that behave very similar to the built-in types. This means that we
should be able to initialize a class type variable (object) when it is declared, much the same
way as initialization of an ordinary variable. For éxample,

int m = 20;
float x = 5.75;

are valid initialization statements for basic data types.

Similarly, when a variable of built-in type goes 'out of scope, the compiler automatically
destroys the variable. But it has not happened with the objects we have so far studied. It is
therefore clear that some more features of classes need to be explored that would enable us

to initialize the objects when they are created and destroy them when their presence is no
longer necessary.

C++ provides a special member function called the constructor which enables an object to
initialize itself when it is created. This is known as automatic initialization of objects. It also
provides another member function called the destructor that destroys the objects when they
are no longer required.

IE.] Constructors

A constructor is a ‘special’ member function whose task is to initialize the objects of its class.
It is special because its name is the same as the ¢lass name. The constructor is invoked
whenever an object of its associated class is created. It is called constructor because it
constructs the values of data members of the class.

A constructor 18 declared and defined as follows:

{f class with o constructor

class integer
{
int m, m:
public:
integer(void); [/ constructor declared
|
integer :: integer(void) [/ constructor defined

{
m=0;n=10;

}

146® Object-Oriented Programming with O++

When a class contains a constructor like the one defined above, it is guaranteed that an
ohject created by the class will be initialized automatically. For example, the dq:-fEnrntinn

integer intl; !/ ebject intl created

not only creates the object intl of type integer but also initializes its data members m and
n to zero, There is no need to write any statement to invoke the constructor funetion (as we
do with the normal member functions). If a 'normal’ member function is defined for zero
initialization, we would need to invoke this function for each of the objects separately. This
would be very inconvenient, if there are a large number of objects.

A constructor that accepts no parameters is called the default constructor. The default
constructor for class A is AzA(). If no such constructor iz defined, then the compiler supplies
a default constructor. Therefore a statement such as

A a:

invokes the default constructor of the compiler to create the object a.

The constructor functions have some special characteristics, These are ;

They should be declared in the public section.

They are invoked automatically when the objects are created.

They do not have return types, not even void and therefore, and they cannot return
values,

They cannot be inherited, though a derived class can call the base class construc-
Lor.

Like other C++ functions, they can have default argumentsa.

Constructors cannot be virtual. (Meaning of virtual will be dizcussed later in
Chapter 9.)

We cannot refer to their addresses,

An object with a constructor (or destructor) cannot be used as a member of a union,
They make 'implicit calls’ to the operators new and delete when memory alloca-
tion iz required.

L

Remember, when a constructor is declared for a class, initialization of the class ohjects
becomes mandatory.

Iﬁ.i’r Parameterized Constructors

The constructor integer(), defined above, initializes the data memberz of all the ohjects to
zero, However, in practice it may be necessary to initialize the various data elements of
different objects with different values when they are created. C++ permits us to achieve this
objective by passing arguments to the constructor function when the objects are created.
The constructors that can take arguments are called parameterized conatructors.

Copyrighted material

Constructors and Destructors 8147

The constructor integer() may be modified to take arguments as shown below:

class integer

int m, n;
public: .
integer(int x, int y); // porometerized constructor

integer :: integer(int x, int y)
{

m= X n= ¥

}
When a constructor has been parameterized, the object declaration statement such as
integer intl;

may not work. We must pass the initial values as arguments to the constructor function
when an object is declared. This can be done in two ways:

& By calling the constructor explicitly.
® By calling the constructor implicitly.

The following declaration illustrates the first method:
integer intl = integer{0,100); // explicit call

This statement creates an integer object intl and passes the values 0 and 100 to it. The
second is implemented as follows:

integer int1{0,100); Jf implicit call

This method, sometimes called the shorthand method, is used very often as it is shorter,
looks better and is easy to implement.

Remember, when the constructor is parameterized, we must provide appropriate
arguments for the constructor. Program 6.1 demonstrates the passing of arguments to the
constructor functions.

Copyrighted material

no= 100

Copyrighted material

Constructors and Destructors 8149

DBJECTZ2
m= 25
n=74

The constructor functions can also be defined as inline functions. Example:

class integer

{
int m, n;
public:
integer(int x, int ¥y} // Inline constructor

me=x; ¥y =n;

F

The parameters of a constructor can be of any type except that of the class to which it
belongs. For example,

class A
{

public:
A(A);
I3

is illegal.

However, a constructor can accept a reference to its own class as a parameter. Thus, the
statement

Class A
{

EEE

puh'l-i.c. :. ‘
A(AL);
|H

i8 valid. In such cases, the constructor is called the copy constructor.

150 Ohject-Oriented Programming with C++

Iﬁ.4 Multiple Constructors in a Class

So far we have used two kinds of constructors. They are:

integer(); /f Mo arguments
integer{int, int); // Two arguments

In the first case, the constructor itself supplies the data values and no values are passed
by the calling program. In the second case, the function call passes the appropriate values
from main(). C++ permits us to use both these constructors in the same class. For example,
we could define a class as follows:

class integer

{

int m, n;
public:

integer() {m=0; n=0;} /{ constructor I
integer(int a, int b)
fm=a; m= hy} /[constructor 2
integer(integer & i}
fm=14i.m n=1.n;} [constructor 3

[}

This declares three constructors for an integer object. The first constructor receives no
arguments, the second receives two integer arguments and the third receives one integer
object as an argument. For example, the declaration

integer I1;

would automatically invoke the first constructor and set both m and n of I1 to zero. The
statement

integer IZ{20,40);

would call the second constructor which will initialize the data members m and n of I2 to 20
and 40 respectively. Finally, the statement

integer I3(12);

would invoke the third constructor which copies the values of 12 into I3. In other words, it
seta the value of every data element of I3 to the value of the corresponding data element of
I2. As mentioned earlier, such a constructor is called the copy constructor. We learned in
Chapter 4 that the process of sharing the same name by two or more functions is referred to
as function overloading. Similarly, when more than one construetor function is defined in a
class, we say that the constructor is overloaded.

Copyrighted material

Constructors and Destructors 2151

Program 6.2 shows the use of overloaded constructors.

OVERLOADED COMSTRUCTORS

finclude <iostream=
using namespace std;

class complex

{
float x, y;

public:

complex(}{ } /[constructor no arg
complex(float a) {x = y = a3} [[constructor-one arg
complex(float real, float imag) // constructor-two args
{x = real; y = imag;)

friend complex sum{complex, complex);
friend void show(complex);

P

complex sum{complex cl, complex c2) [/ friend

{
complex c3;
c3.x = cl.x + c2.x;
c3.y = cl.y + c2.y}
return{c3);

}

void show(complex c) [l friend

{
cout =< c.x =< " + j" =< c.y =< "\n";

)

int main()

{
complex A(2.7, 3.5); [/ define & initiaolize
complex B(1.6); [/ defime & initiolize
complex C; /! define
C = sum{A, B); J/ sum{) is a friend
cout =< "A = ": show(A); // show() is also friend
cout =< "B = "; show(B);
cout << "C = "; show(C);

/[Another way to give initial values (second method)
complex P,Q,R; ' /| define P, Q-and R

Contd)

Copyrighted material

152 Ohject-Oriented Programming with C++

P = complex(2.5,3.9); Sl initialize P
0 = complex{l.6,2.5); : Jf initialize
R = sum(P,Q);

cout << "\n";

cout =< "P = "; show(P);

cout << *Q = ": show(Q);

cout << *R = "; show({R);

return 0

PROGRAM 6.2

The output of Program 6.2 would be:

A= 2.7+ j3.5
B=1.6 + jl.6
C=4.3+ j5.1
P=2.5+ j3.9
Q=1.6 + j2.5
R=4,1+ j6.4

- rnote

There are three constructors in the class complex. The first constructor, which takes no
arguments, is used to create objects which are not initialized; the second, which takes
one argument, is used to create objects and initialize them; and the third, which takes
two arguments, i alzo used to create objects and initialize them to specific values. Note

Rt:‘tmt the second method of initializing values looks better.

Let us look at the first constructor again.
complex(}{ }

It contains the empty body and does not do anything. We just stated that this is used to
create objects without any initial values. Remember, we have defined objects in the earlier
examples without using such a constructor. Why do we need this constructor now?, As
pointed out earlier, C++ compiler has an implicit constructor which creates ohjects, even
though it was not defined in the class.

This works fine as long as we do not use any other constructors in the class. However,
once we define a constructor, we must also define the "do-nothing” implicit constructor.
This constructor will not do anything and is defined just to satisfy the compiler.

Constructors and Desfructors #153

IE.E Constructors with Default Arguments

It is possible to define constructors with default arguments. For example, the constructor
complex{() can be declared as follows:

complex(float real, float imag=0);:
The default value of the argument imag is zero. Then, the statement
complex C(5.0);

assigns the value 5.0 to the real variable and 0.0 to imag (by default). However, the
statement

complex C{2.0,3.0);

assigns 2.0 to real and 3.0 to imag. The actual parameter, when specified, overrides the
default value. As pointed out earlier, the missing arguments must be the trailing ones.

It is important to distinguish between the default constructor AsA() and the default
argument constructor AzA(int = 0). The default argument constructor can be called with
either one argument or no arguments. When called with no arguments, it becomes a default
constructor. When both these forms are used in a class, it causes ambiguity for a statement
such as

A a;

The ambiguity is whether to 'call' AzzA() or Az:Alint = 0).

Iﬁ.ﬁ Dynamic Initialization of Objects

Class objects can be initialized dynamically too. That is to say, the initial value of an object
may be provided during run time. One advantage of dynamie initialization is that we can
provide various initialization formats, using overloaded constructors. This provides the
flexibility of using different format of data at run time depending upon the situation,

Consider the long term deposit schemes working in the commercial banks. The banks
provide different interest rates for different schemes as well as for different periods of
investment. Program 6.3 illustrates how to use the class variables for holding account details
and how to construct these variables at run time using dynamic initialization.

154

DYMAMIC INITIALIZATION OF COMSTRUCTORS

/[Long-term fixed deposit system
#include <jostream>
using namespace std;
class Fixed_deposit

Object-Onented Programming with C++

{
Tong int P_amount; /| Principal omount
int Years; /| Period of investment
float Rate; /[Interest rate
float R_value; [/ Return value of omount
public: ’
Fixed deposit(){ }
Fixed deposit(long int p, int y, float r=0.12);
Fixed deposit(long int p, int y, int r);
void display(void); '
H
Fixed deposit :: Fixed deposit{long int p, int y, float r)
{
P_amount = p;
Years = y;
Rate = r;
R value = P_amount;
for{int 1 = 13 1 <= y; j++)
R value = R_value * (1.0 + r);
}
Fixed_deposit :: Fixed deposit(long int p, int y, int r)
{
P amount = p;
Years = y:
Rate = r;
R value = P_amount;
for(int i=1; j<my; i++)
R value = R value*(1.0+float(r)/100);
}

void Fixed deposit :: display(void)
{

cout =< "\n"

=< "Principal Amount = " =< P _amount << "\n"
<< "Return Value = " =< R _value =< "\n";

ontd)

Copyrighted material

int main()
{ .

long int p;

int ¥i
float r:

int R

Constructors and Destructors

Fixed deposit FD1, FD2, FO3; // deposits created

// principal amount

/[investment period,’ yéars
/[interest rote, decimal form
/[interest rote, percent form

®155

cout << "Enter amount,period,interest rate(in percent)=<"\n";

cin »= p >= y >> R;
FD1 = Fixed deposit(p,y.R):

cout =< "Enter amount,period,interest rate(decimal fnﬁm}' << "\n";:

cin >> p 2> y >>.r;
FD2 =. Fixed_deposit(p,y,r);

cout’ << “Enter amount and period* =< "\n";

cin »> p == y;
FD3 = Fixed deposit(p.y):

cout =< "\nDeposit 1";
FD1.display(); '

cout << "\nDeposit 2";
FD2.display();

cout =< "\nDeposit 3";
FD3.display();

return 0;

The output of Program 6.3 would be:

PROGRAM 6.3

Enter amount,period,interest rate(in percent)

10000 3 18

Enter amount,period,interest rate{in decimal form)

10000 3 0.18
Enter amount and period
10000 3

Deposit 1
Principal Amount = 10000
Return Value = 16430.3

Copyrighted material

156 @ Object-Oriented Programming with C#+

Deposit 2

Principal Amount = 10000 r
Return Value = 16430.3 .
Deposit 3

Principal Amount = 10000

Return Value = 14049.3

The program uses three overloaded constructors. The parameter values to these
constructors are provided at run time. The user can provide input in one of the following
forms: '

1. Amount, period and interest in decimal form.
2. Amount, period and interest in percent form.
3. Amount and period.

note

Since the constructors are overloaded with the appropriate parameters, the one that
matches the input values is invoked. For example, the second construetor is invoked for
the forms (1) and (3), and the third is invoked for the form (2). Note that, for form (3), the
constructor with default argument is used. Since input to the third parameter is missing,
it uses the default value for r.

6.7 Copy Constructor

We briefly mentioned about the copy constructor in See¢. 6.3. We used the copy constructor
integer(integer &i);

in Sec. 6.4 as one of the overloaded constructors.

As stated earlier, a copy constructor is used to declare and initialize an object from another
object, For example, the statement

integer 12(11);

would define the object I2 and at the same time initialize it to the values of 1. Another form
of this statement is

integer IZ2 = I1;

The process of initializing through a copy constructor is known as copy initialization.
Remember, the statement

12 = I1;

www___.—ﬂﬂ

will not invoke the copy constructor. However, if I1 and I2 are objects, this statement is

legal and simply assigns the values of I1 to I2, member-by-member. This is the task of the
overloaded assignment operator{=). We shall see more about this later.

A copy constructor takes a reference to an object of the same class as itself as an argument.

Let us consider a simple example of constructing and using a copy constructor as shown in
Program 6.4.

Copyrighted material

158 & Object-Oniented Programming with Cs+
The output of Program 6.4 is shown below

100
100
100

i
i
i
i 100

=N =R ==
o o I o]
— = — —h
2 e =

feoteE
A reference variable has been used as an argument to the copy constructor. We cannot
pass the argument by value to a copy constructor.

When no copy constructor is defined, the compiler supplies its own copy constructor.

lﬁ.a Dynamic Constructors

The constructors can also be used to allocate memory while creating objects. This will enable
the system to allocate the right amount of memory for each object when the objects are not
of the same size, thus resulting in the saving of memory. Allocation of memory to objects at
the time of their construction is known as dynamic construction of objects. The memory is
allocated with the help of the new operator. Program 6.5 shows the use of new, in constructors
that are used to construct strings in objects.

Finclude =iostreams
#include <string=

using namespace std:

class String
{

char *name;
int length;
public:
String() ff constructor-1
length = 0;

name = new char[iength + 1];

}

String{char *s) // constructor-?
1
length = strien(s);

(Cantd)

Copyrighted material

Constructors and Destructors #159

name = new char[length + 1]; // one odditional
/| character for \0
strcpy(name, s);

}

void display(void)

{cout << name << "\n";}

void join(String &a, String &b);
}i

void String :: join(String &a, String &b)
{
length = a.length + b.length;
delete name;
name = new char[length+1]; /] dymamic allocation

strcpy(name, a.name);
strcat(name, b.name);

int main{)
{
char *first = "Joseph *;
String namel(first), name2(“Louis "),name3("Lagrange"),sl,s2;

sl.join{namel, name2);
s2.join(sl, name3):
namel.display();
nameZ.display();
name3.display();:
sl.display();
s2.display();

return 0;

PROGRAM 6.5

The output of Program 6.5 would be:

Joseph

Louis

Lagrange

Joseph Louis

Joseph Louis Lagramge

Copyrighted material

160® Object-Oriented Programming with C++

rtode

This Program uses two constructors. The first is an empty constructor that allows us to
declare an array of strings. The second constructor initializes the length of the string,
allocates necessary space for the string to be stored and creates the string itself. Note
that one additional character space is allocated to hold the end-of-string character "\0'.

The member function join() concatenates two strings. It estimates the combined length
of the strings to be joined, allocates memory for the combined string and then creates the
same using the string functions strepy() and streat(). Note that in the function join(),
length and name are members of the ohject that callz the function, while alength and
aname are members of the argument object a. The main() function program mncatenatas
three strings into one string. The output is as shown below:

Joseph Louis Lagrange

IE Constructing Two-dimensional Arrays

We can construct matrix variables using the class type objects. The example in Program 6.6
illustrates how to construct a matrix of size m x n.

* CONSTRUCTING MATRIX OBJECTS

#include <iostream
using namespace std;
class matrix

int **p: /f pointer to motrix
int d1,d2; /| dimensions
public:
matrix{int 20 -Int-y):
void get element{int i, int j, int valué)
{plil[j]1=value;}
int & put element(int i, int j)
{return pli](il:}

matrix :: matrix{int x, int ¥}
{
dl = X3
dZ = y:
p = new int *[dl]; [creotes an arroy pointer

for(int i = 0; i < dl; i++)

(Contd)

-2 161

Constructors and Destructors

pli] = new int[d2]; // creates spoce for each row

|

int main()

L
int m, m;

cout << "Enter size of matrin: ";
cin =>.m >> n;

matrix Alm,n); // motrix object A constructed

cout =< "Enter matrix elements row by row ‘n";
int i, j. value;

for(i = 03 i < my i++)
for{j = 0; j < n; j+t)
{
cin = value;
A.get element(i,j,value);
t
cout =< "\n";
cout <= A.put_element(1,2);

return 0;
s
The output of a sample run of Program 8.6 is as follows.

Enter size of matrix: 3 4
Enter matrix elements row by row

PROGRAM &.6

11 17 13 14
15 16 17 18
19 20 21 22 D

[i] i 2 3 -]
17

Pointer P [0] ———

17 is the value of the

element (1,2). Potnier P 1]
The constructor first Pointer P [2] "
creates a vector pointer to an

d1 mws

int of size dl1. Then, it

: : . F P [3] it
allocates, iteratively an int ointer P [3]

type vector of size d2 pointed repressnb the slsiment PT2] (3]
at by each element plil.

Thus, space for the elements of a d1 » d2 matrix is allocated from free store as shown above.

162 @ Ohject-Oriented Programming with C++

Iﬁ.lﬂ const Objects

We may create and use constant objects using const keyword before object declaration. For
example, we may create X as a constant object of the class matrix as follows:

const matrix X(m,n): // object X is constant

Any attempt to modify the values of m and n will generate compile-time error. Further,
a constant object can call only const member functions. As we know, a const member is a
function prototype or function definition where the keyword const appears after the function's
signature.

Whenever const objects try to invoke non-const member functions, the compiler generates
ETrTors.

Iﬁ.l 1 Destructors

A destrucitor, as the name implies, is used to destroy the ohjects that have been ereated by
a eonstructor. Like a constructor, the destructor is a member function whose name is the
same as the class name but is preceded by a tilde. For example, the destructor for the class
integer can be defined as shown below:

~integer(){ }

A destructor never takes any argument nor does it return any value. It will be invoked
implicitly by the compiler upon exit from the program (or block or function as the case may
be) to clean up storage that is no longer accessible. It is a good practice to declare destructors
in a program since it releases memory space for future use.

Whenever new is used to allocate memory in the constructors, we should use delete to
free that memory. For example, the destructor for the matrix class discussed above may be
defined as follows:

matrix :: -matrix()

{
for(int i=0; 1=dl; 1++)
delete p[i];
delete p;

I

This iz required because when the pointers to objects go out of scope, a destructor is not
called implicitly.

Constructors and Destructors ——————————@ 163

 Tho example below illustrates that the destrustor has been invoked implicily by the

Copyrighted material

164@ Object-Oriented Programming with C++
The output of a sample run of Program 6.7 is shown below:
ENTER MAIN

No.of object created 1
No.of object created 2
No.of object created 3
No.of ohject created 4

ENTER BLOCK1

No.of object created 5
No.of object destroved 5

ENTER BLOCKZ

No.of object created 5
No.of object destroyed 5

RE-ENTER MAIN

No.of object destroyed 4
No.of object destroyed 3
Mo.of object destroyed 2
No.of object destroyed 1

ot e

As the ohjects are created and destroyed, they increase and decrease the count. Notice
that after the first group of objects is created, AS is created, and then destroved, A6 is
created, and then destroved. Finally, the rest of the objects are also destroved. When the
closing brace of a scope is encountered, the destructors for each object in the scope are
called. Note that the objects are destroyed in the reverse order of creation.

~_ SUMMARY | .

C++ provides a special member function called the constructor which enables an object
to initialize itself when it is created. This is known as automatic initialization of objects.

A constructor has the same name as that of a class.
Constructors are normally used to initialize variables and to allocate memory.
Similar to normal functions, constructors may be overloaded.

t¢¢ O

Consiructors and Destructors

4 When an ohject is created and initialized at the same time, a copy constructor gets

called.

¢ ¢

objects when they are no longer required.

automatic initialization
Const

Constructor
constructor overloading
copy constructor

copy initialization
default argument
default constructor
Delete

Destructor

dynamic construction
dynamic initialization

Yy Y Y Y Y Y YYYYYY

Review Questions

We may make an ohject const if it does not modify any of its data values.
C++ also provides another member function called the destructor that destroys the

Key Terms

YYY Y Y YYYYYYY

explicit call

implicit call
implicit constructor
initialization

new
parameterized constructor
reference
shorthand method
streat()

strepyi)

strlen()

virtual

6.1 What is a constructor? Is it mandatory to use constructors in a class?
6.2 How do we invoke a constructor function?

6.3 List some of the special properties of the constructor functions.

6.4 What is o parameterized constructor?
6.5 Can we have more than one constructors in a class? If yes, explain the need for

sch a situwation,

6.6 What do you mean by dynamic initialization of objects? Why do we need to do

this?

6.7 How is dynamic initialization of objects achieved?
6.8 Distinguish between the following fwo statements:

time T2(T1);
time T2 = Tl

T1 and T2 are ohjects of time class.

166

6.9 Describe the importance of destructors.

6.10 State whether the following statements are TRUE or FALSE.
{a) Constructors, like other member [unctions, can be declared anywhere in

the class.
(b) Constructors do not return any values.

{c) A constructor that accepts no parameter is known as the defaultf constructor.
(d}) A class should have at least one constructor.

(e} Destructors never take any argument,

Debugging Exercises

6.1 Identify the error in the following program.

6.2

#include =jostream.h=

class Room
{
int length;
int width;
public:
Room{int 1, int w=0):
width{w),
Tenath{l)
{
}
F
void main()

{
Room objRooml;
Room objRoomZ(12, 8);

Identify the error in the following program.

#include <iostream.h>

class Room

{
int length;
int width;

public:

Object-Oriented Programming with C++

Constructors and Destructors

6.3

Room()

{
length = 03
width = 0;

)
Room{int value=8)
{
length = width = 8;
I
void display()
{
cout =< length == ' ' <= width;
|
b

void main()
{
Room objRoom];
objRooml.display();
I

Identify the error in the following program.

#include <jostream.h=>
class Room

{
int width;

int height;
static int copyConsCount;
public:
void Room()
{
width = 12;
height = 8;
I

Room(Room& r)

{
width = r.width;
height = r.height;

* 167

168@ Object-Onented Programming with Ce+

copvConsCount+s;

vald displopyConsCount ()
{

cout == copyConsCount;
b
int Room::copyConsCount = 0

void main()

{

Room objRoom] ;

Room objRoom? (objRooml);
Room objRoom3 = objRooml;
Room objRoomd;

pbjRoomd = objRoom3;

obhjRoomd . dispCopyConsCount();

6.4 Identify the error in the following program.

#include <iostream.h=

class Room

{
int width;
int height;
static int copyConsCount;

public:
Room()
{
width = 12;
height = &;
I

Room(Roomd r)

!

Constructors and Destructors # 169

width = r.width;
height = r.height;
copyConsCount++;

)

void disCopyConsCount()
{

cout << copyConsCount;
]
}

int Room::copyConsCount = 0;

void main()

{
Room objRooml;
Room objRoom2 (objRooml);
Room objRoom3 = objRooml;
Room objRoomd;
objRoomd = objRoom3;

objRoomd ., dispCopyConsCount () ;

Programming Exercises

6.1

6.2

Design constructors for the classes designed in Programming Exercises 5.1 through

5.5 of Chapter 5.

Define a class String that could work as a user-defined string type. Include

constructors that will enable us to create an uninitialized string

String s1; // string with length 0

and also to inifialize an object with a string constant at the time of creation like
String s2("Well done!");

Include a function that adds two strings to make a third string. Note that the

statement

sd = 51;
will be perfectly reasonable expression to copy one string tq another.
Write a complete program to test your class to see that it does the following tasks:
(a) Creates uninitialized string objects.
(b) Creates objects with string constanis.

170® Object-Oriented Programming with C++

(e} Concatenales lwo strings properly.

(d) Displays a desired string ohject.

6.3 A book shop maintains the inventory of books that are being sold at the shop. The
list includes details such as author, title, price, publisher and stock position.
Whenever a cusfomer wanfs a book, the sales person inputs the title and author
and the syatem searches the {ist and displays whether it is available or not, If it is
not, an appropriate message is displayed. If it is, then the system displays the
book details and requests for the number ﬂfmpie# required. [f the requested copies
are available, the total cost of the requested copies is displayed; otherwise the
message "Regquired copies nof in stock"” is displayed.

Design a system using a class called books with suitable member functions and
constructors. Use mew operator in constructors to allocate memory space required.

6.4 Improve the system design in Exercise 6.3 to incorporate the following features:
(a) The price of the books should be updated as and when required. Use a private

member function to implement this.

(b) The stock value of each book should be automatically updated as soon as a
transaction is completed.

(e} The number afnueeeufuf and unsuccessful transactions should be recorded
for the purpose of statistical analysis. Use statie data members to keep count
of transactions.

6.5 Modify the program of Exercise 6.4 to demonstrate the use of pointers to access the
members.

Copyrighted maierial

¥ Y Y Y Y Y Y YYYYY

Operator Overloading and
Type Conversions

Key Concepts

Overloading

Dperator functions
Owerloading unary operators
String manipulations

Basic to class type

Class to class type

Crperator overloading
Owverloading binary operators
Using friends for overloading
Type conversions

Clags to basic type

Chverloading rules

IT. 1 Introduction

Operator overloading is one of the many
exciting features of C++ language. It is an
important technique that has enhanced the
power of extensibility of C++. We have
stated more than once that C++ tries
to make the user-defined data types behave
in much the same way as the built-in types.
For instance, C++ permits us to add
two variables of user-defined types with the
same syntax that is applied to the
basie types. This means that C++ has the
ability to provide the operators with a
special meaning for a data type. The
mechanism of giving such special meanings
to an operator iz known as operator
overloading.

Operator overloading provides a flexible
option for the creation of new definitions
for most of the C++ operators. We can

172 @ Object-Oriented Programming with C++

almost create a new language of our own by the creative use of the function and operator
overloading techniques. We can overload (give additional meaning to) all the C++ operators
except the following:

® (lass member access operators (., .*).
® Scope resolution operator ().

® Size operator (sizeof).
® Conditional operator (7:).

The excluded operators are very few when compared to the large number of operators
which qualify for the operator overloading definition.

Although the semantics of an operator can be extended, we cannot change its syntax, the
grammatical rules that govern its use such as the number of operands, precedence and
associativity. For example, the multiplication operator will enjoy higher precedence than
the addition operator. Remember, when an operator is overloaded, its original meaning is
not lost. For instance, the operator +, which has been overloaded to add two vectors, can still
be used to add two integers.

I?,E Defining Operator Overloading

To define an additional task to an operator, we must specify what it means in relation to the
class to which the operator is applied. This is done with the help of a special function, called
operator function, which describes the task. The general form of an operator funetion is:

return type classmame :: operator oplarglist)

[

}

where return type is the type of value returned by the specified operation and op is the
operator being overloaded. The op is preceded by the keyword operator. operator op is
the function name.

Function body // task defined

Operator functions must be either member functions (non-static) or friend functions. A
basic difference between them is that a friend function will have only one argument for
unary operators and two for binary operators, while a member function has no arguments
for unary operators and only one for binary operators. This is because the object used to
invoke the member function is passed implicitly and therefore is available for the member
function. This iz not the case with friend functions. Arguments may be passed either by
value or by reference. Operator functions are declared in the class using prototvpes as
follows: '

Operator Overloading and Type Conversions 2173

vector operator+(vector); ff vector addition
vector operator—(}; {f umary minus
friend vector operator+({vector,vector); {1 vector oddition
friend vector operator—(vector): J I unory minus
vector operator—{vector &a); f/ subtroction
int operator=={vector); /! comparison
friend int operator=s{vector,vector) M} comporison

vector is a data type of clags and may represent both magnitude and direction (as in
physics and engineering) or a series of points called elements (as in mathematics)

The process of overioading involves the following steps:

1. Create aelass that defines the data type that is to be used in the overloading operaion.
2. Declare the operator function operator op() in the public part of the class.

[t may be either a member function or a friend function.
3. Define the operator function to implement the required operations.

COrwerloaded operator functions can be invoked by expressions such as
ap X or X op
for unary operators and

X opy
for binary operators. op x (or x op) would be interpreted as
operator op (x)
for friend functions. Similarly, the expression x op v would be interpreted as either
x.operator op (y)
in case of member functions, or
operator op (x,y)
in case of friend functionz. When both the forms are declared, standard argument matching

iz applied to resolve any ambiguity.

7.3 Overloading Unary Operators

Let us consider the unary minus operator. A minus operator when used as a unary, takes
Just one operand. We know that this operator changes the sign of an operand when applied
to a basic data itermn. We will see here how to overload this operator so that it can be applied

1740——m Object-Oriented Programming with C++

to an object in much the same way as is applied to an int or float variable. The unary minus
when applied to an object should change the sign of each of its data items.

Program 7.1 shows how the unary minus operator is overloaded.

OVERLOADING UNARY MINUS

(Contd)

Copyrighted material

Operator Overloading and Type Conversions 175

cout =< "§ : ";

S.display();:
-5; [/ activates operator-()} function

cout =< "5 2 %
S.display();

return 03

PROGRAM 7.1

The Program 7.1 produces the following output:

5 : 10 -20 30
S : =10 20 =30

reode

The function operator —() takes no argument. Then, what does this operator function do?. It
changes the sign of data members of the ohject 8. Since this function is a member function
of the same class, it can directly access the members of the object which activated it.

Remember, a statement like
§2 = =51;

will not work because, the function operator—{) does not return any value. It can work if
the funetion is modified to return an object.

It is possible to overload a unary minus operator using a friend function as follows:

friend wvoid operator-(space &s); // declaration
void operator-(space &s) // definition
{
E.X = —5.K;
5. = —5.¥:
5.2 = -5,2;
}
rele

Note that the argument is passed by reference. It will not work if we pass argument
by value because only a copy of the object that activated the call is passed to operator-().
Therefore, the changes made inside the operator function will not reflect in the
called ohject.

176 @ Object-Oriented Programming with C++

I?.4 Overloading Binary Operators

We have just seen how to overload an unary operator. The same mechanism can be used to
overload a binary operator. In Chapter 6, we illustrated, how to add two complex numbers
using a friend function. A statement like

C = sum(A, B); [/ functional notation.
was used. The functional notation can be replaced by a natural looking expression
C=A+8; [/ arithmetic nototion

by overloading the + operator using an operator+() function. The Program7.2 illustrates
how thizs is accomplished.

OVERLOADING + OPERATOR
- ginclude <ipstream
using namespace std;

class complex

{
float x; /! real part
float y; /[imoginary port
public:
complex(}{ } J/ constructor 1
complex{float real, float imag) /] constructor 2

{ x = real; v = imag; }
complex operator+({complex);
void display(void);

bi

complex complex :: operator+{complex c)

1

complex temp; /{ temporary
temp.x = X + C.X; I/ these are
temp.y = ¥ + C.¥; ! float odditions

return(temp);
i

void complex :: display(void)
{

cout =< =< " 4 " e ¥ == FinTs

(Contd)

Operator Overloading and Type Conversions o177

}

fnt main()

{ :
complex CI, C2, C3; [/ invokes constructor l
C1 = complex(2.5, 3.5); // invokes constructor 2
CZ = complex(l.6, 2.7);
£3 = C1 + C2;

cout << "C1 = *; Cl.display();
cout =< "C2.= ': C2.display();
cout << "C3 = *; C3.display();

return 0z

PROGRAM 7.2

The output of Program 7.2 would be:

€l
c2
c3

&

1] 1] n
— o oan
+ + +
Lx L £
RS

3
2.
6

-ﬂ-lll-il\.l

*

note

Let us have a close look at the function operator+() and see how the operator overloading
is implemented.

complex complex :: operator+(complex c)

{
complex temp;
temp.x = x + C.xj
temp.y = y + C.¥;
return(temp);

1

We should note the following features of this function:

1. It receives only one complex type argument explicitly.
2. It returns a complex type value.
3. It iz a member function of complex.

The function is expected to add two complex values and return a complex value as the
result but receives only one value as argument. Where does the other value come from?
Now let us look at the statement that invokes this function:

C3i = Cl + C2; [/ invokes operator+() function

178® Object-Oriented Programming with C++

We know that a member function can be invoked only by an ohject of the same class.
Here, the object C1 takes the responsibility of invoking the function and C2 plays the role of
an argument that is passed to the function. The above invoecation statement is equivalent
to

Ll

€3 = Cl.operator+{C2); /f usual function call syntax

Therefore, in the operator+() function, the data members of C1 are accessed directly
and the data members of C2 (that is passed as an argument) are accessed using the dot
operator. Thus, both the ohjects are available for the function. For example, in the statement

temp.x = X + C.X;
¢.x refers to the object C2 and x refers to the object Cl. temp.x is the real part of temp that
has been created specially to hold the results of addition of C1 and C2. The funetion returns
the complex temp to be assigned to C3. Figure 7.1 shows how this is implementoed.

As a rule, in overloading of binary operators, the feft-fiand operand is used to invoke the
operator function and the right- hand operand is pas=ed as an argument.

R . i
i complex operator + {complex c) i
i i
i]
! complex temp ; i
| i
termp i H
4,10 E tﬂ'ﬂp‘.ﬂ: = [+ X i
I 1
6.20 ! wrmpy = | Gy + y | ¢
i i
| 1
1 1
i i
| retum (temp) ; i
retum ’7 ’7
C3 = 1 + C2;
410 = 250 x 160 =
820 y 350 y 270 ¥

Fig. 7.1 & Implementation of the overloded + operator :

L,

Copyrighted maierial

Operatar Cverloading and Type Conversions e179

We can avoid the creation of the temp object by replacing the entire function body by the
following statement:

return complex((x+c.x), (y+c.¥)); !/ invokes constructor 2

What does it mean when we use & chiss name with an arguisent list? When the compiler
comes across a statement like this, it invokes an appropriate constructor, initializes an
object with no name and returns the contents for copying into an object. Such an object is
called a temporary object and goes oul of space as soon as the contents are assigned to
another object. Using temporary objects can make the code shorter, more efficient and better
to read.

I‘L.’r Overloading Binary Operators Using Friends

Ag stated earlier, friend functions may b u=id in the place of member functions for
overloading a binary operator, the only difference being that a friend function requires two
arguments to be explicitly passed to it, while a member function requires only one.

The complex number program discussed in the previous section can be modified using a
friend operator function as follows:

1. Replace the member function declaration by the friend function declaration.
friend complex operator+(complex, complex):

2. Redefine the operator function as follows:
complex operator+{complex a, complex b)

[
}

return complex{(a.x+b.x), (a.y+b.y));

In this caze, the statement
€3 = € + C2;
is equivalent to
€3 = operator+(Cl, CZ);
In most cases, we will get the same results by the use of either a friend function or a
member function. Why then an alternative is made available? There are certain situations
where we would like to use a friend function rather than a member function. For instance,

consider a situation where we need to use two different types of operands for a binary
operator, say, one an object and another a built-in tyvpe data as shown below,

AwB+2 {orA=B=*2;)

Copyrighted material

180 @ Object-Oriented Programming with C++

where A and B are ohjects of the same class. This will work for a member function but the
statement

A=¢2 +B; (orA=2*B)

will not work. This is because the left-hand operand which is responsible for invoking the
member function should be an object of the same class. However friend function allows
both approaches. How?

It may be recalled that an object need not be used to invoke a friend function but can be
passed as an argument. Thus, we can use a friend function with a built-in type data as the
feft-hand operand and an object as the right-hand operand. Program 7.3 illustrates this,

using scalar multiplication of a vector. It also shows how to overload the input and output
operators >> and <<.

. OVERLOADING OPERATORS USING FRIENDS :
finclude =<jostream.hs
const size = 3;

class wvector

[

int w[size]:

public:
vector(); {1 constructs null vector
vector{int *x); {f constructs vector. from arraoy
f~iend vector operator *(int a, vector h); H o friend 1
friend vector operator *(vector b, int a); i friend 2

friend istream & operator >> (istream &, vector &);
friend ostream & operator << (ostream &, vector &);

ki
vector :: vector()
{
for{int i=0; i<size; i++)
v[i] = 0;
]
vector :: vector{int *x)
{

for{int 1=0; fesize; i++)

vli] = x[i];

fContd)

Operatar Overloading and Type Conversions ®181

vector operator *(int a, vector b)

{

vector c;
for{int i=0; i < size; i++)
c.v[i] = a * b.v[1];
return ci
vector operator *(vector b, int a)
vector cj
for{int i=0; i<size; i++)
c.v[i] = b.v[i] ™ a3

return c;
|

istream & operator >> (istream &din, vector &b)

{
for{int 1=0; f<size; 1++)
din >= b.v[i];
return({din);
}
ostream & operator << (ostream Adout, vector &h)
{
dout << "(" << b.v [0];
for(int i=1; i<size; i++)
dout << ", ® << h.v[i];
dout =< ")";
return(dout);
}
int x[size] = {2,4,6}:"
int main{)
|
vector m; /[invokes constructor]
vectar n = x; [/ tnvokes constructor 2

cout << “Enter elements of vector m ® << "\n";
cin == m; !l invokes operator=={) function
{Contd)

Copyrighted material

182 & Object-Oriented Programming with C++

cout =< “in":

cout << "m = " << @ << "\n%; [{ invokes operator <<({)
vector p, Qi

p=2*m ., invokes friend I

q=n*2; [/ invokes friend 2

cout << "\n¥;

cout =< "p = " << p << "\n"; /[invokes ppergtors<{)
cout. =< g = " << g =< "\pn";

return 0;

PROGRAM 7.3

Shown below is the output of Program 7.3;

Enter elements of wvector m
510 15

m = (5, 10, 15)
p = (10, 20, 30)
q = (4, 8, 12)

The program overloads the operator * two times, thus overloading the operator funetion
operator®(} itself. In both the cases, the functions are explicitly passed two arguments and
they are invoked like any other overloaded function, based on the types of its argumentsa.
This enables us to use both the forms of scalar multiplication such as

p=2*m /[equivalent to p = operotor*(2,m);
gq=n"2; [/ equivalent to q = operator*(n,2);

The program and its output are largely self-explanatory. The first constructor
vector();

constructs a vector whose elements are all zero. Thus
vector m;

creates a vector m and initializes all its elements to 0. The second constructor
vector(int &x);

creates a vector and copies the elements puintéd to by the pointer argument x into it.
Therefore, the statements

Operator Overloading and Type Conversions ®183

int x[3]
vector m

(2. 4, B};

L

create n as a vector with components 2, 4, and 6.

- e

We have used vector variables like m and n in input and output statements just like
simple variables. This has been made possible by overloading the operators >> and <<
using the functions:

friend istream & operator==(istream &, vector &);
friend ostream & operator<<(ostream &, vector &)

istream and ostream are classes defined in the iostream.h file which has been included
'\if the program. y

IT.E Manipulation of Strings Using Operators

ANSI C implements strings using character arrays, pointers and string functions. There
are no operators for manipulating the strings. One of the main drawbacks of string
manipulations in C is that whenever a string is to be copied, the programmer must first
determine its length and allocate the required amount of memaory.

Although these limitations exist in C++ as well, it permits us to create our own definitions
of operators that can be used to manipulate the strings very much similar to the decimal
numbers. (Recently, ANSI C++ committee has added a new class called string to the C++
class library that supports all kinds of string manipulations. String manipulations using
the string claszs are discussed in Chapter 15.

For example, we shall be able to use statements like

stringd = stringl + string2;
if(stringl »= stringZ) string = stringl;

Strings can be defined as class objects which can be then manipulated like the built-in
types. Since the strings vary greatly in size, we use new to allocate memory for each string
and a pointer variable to point to the string array. Thus we must create string objects that
can hold these two pieces of information, namely, length and location which are necessary
for string manipulations. A typical string class will look as follows:

class string

(
char *p; /! pointer to string

Copyrighted material

Object-Onented Programming with C++

len; [/ length of string

. [/ member functions
o ff to initiaglize and
. [monipulote strings

We shall consider an example to illustrate the application of overloaded operators to
strings. The example shown in Program 7.4 overloads two operators, + and <= just to show
how they are implemented. This can be extended to cover other operators as well.

MATHEMATICAL OPERATIONS ON STRINGS

#include <string.h>
#include <iostream.h>

class string

i

public:

char-*p;

int len;

string{) {len = 0; p = 03} {{ creote null string
string{const char * s); /| create string from orraoys
string{const string & s): /[copy constructor

- string{){delete p;) // destructor

/f + operator
friend string operator+{const string &s, const string &t);

{f == operator
friend int operator<={const string &S, const string &t);
friend void show(const string s);

:: string(const char *s)
len = strien{s);

p = new char[len+l];
strepy(p,.s);

11 string(const string & s)

tenm = 5. len:
p = new char[len+l];

(Contd}

Operator Overloading and Type Conversions

} strepy(p.s.p):

// overloading + operator
string operator+{const string &s, const string ltl
{
string temp;
temp.len = s.len + t.len;
temp.p = new char[temp.len+l];
strcpy(temp.p,s.p);
strcat(temp.p,t.p);
return(temp);
}
// overloading <= operator
int operator<=({const string &s, const string &t)
{
int m = strien{s.p);:
int n = strlen(t.p);

if(m <= n) return(l);

else return(0);

}
void show{const string s)
{
cout << §.p;
}
int main()
{

string s1 = "New *;
string 52 = "York";
string 53 = "Delhi®;
string tl,t2,t3;

tl = 51;

t2 = s2;

t3 = s1+53;

cout << "\ntl = "; show(tl);
cout =< "\nt2 = "; show(t2);
cout << "\n";

cout << "\nt3 = ": show(t3);
cout << "\n\n";

2185

(Contd)

186® Ohject-Oriented Programming 10zh 2+

if(tl <= t3)
{
show(tl);
cout =< " smaller than ";
show(t3):
cout << "\n";

else
{
show(t3);
cout << " smaller than ";
show(tl);
cout << *\n";
i
return 0;

| PROGRAM 7.4

The following is the output of Program 7.4

tl = Mew
t2 = York

t3 = Mew Delhi

Hew smaller than MNew Delhi

IT.T Rules for Overloading Operators

Although it looks simple to redefine the operators, there are certain restrictions and
limitations in overloading them. Some of them are listed below:

1. Omnly existing operators can be overloaded. New operators cannot be created.

2. The overloaded operator must have at least one operand that is of user-defined
type.

3. We cannot change the basic meaning of an operator. That is to say, we cannot
redefine the plusi+) operator to subtract one value from the other.

4. Overloaded operators follow the syntax rules of the original operators. They cannot

be overridden.

There are some operators that cannot be overloaded. (See Table 7.1.)

We cannot use friend functions to overload certain operators. (See Table 7.2.) How-

ever, member functions can be used to overload them.

el

Operator Overloading and Type Conversions ® 187

7. Unary operators, overloaded by means of a member function, take no explicit argu-
ments and return no explicit values, but, those overloaded by means of a friend
function, take one reference argument (the object of the relevant class).

8. Binary operators overloaded through a member function take one explicit argu-
ment and those which are overloaded through a friend function take two explicit
arguments.

8. When using binary operators overloaded through a member function, the left hand
operand must be an ohject of the relevant class.

10. Binary arithmetic operators such as +, -, *, and / must explicitly return a value.
They must not attempt to change their own arguments,

Table T.1 Operators that cannot be overloaded

Sizeof Bize of operator

. Membership operator

S Pointer-to-member operator
= Scope resolution operator
T Conditional operator

Table 7.2 Where a friend cannot be used

= Assignment operator

{} Function eall operator

i) Subscripting operator

=3 Class member access operator

I'.-".B Type Conversions

We know that when constants and variables of different types are mixed in an expression,
C applies automatic type conversion to the operands as per certain rules. Similarly, an
assignment operation also causes the automatic type conversion. The type of data to the
right of an assignment operator iz automaticallv converted to the type of the variable on the
left, For example, the statements

int m;
float x = 3.14159;

m= x;

convert x to an integer before its value is assigned to m. Thus, the fractional part is truncated.
The type conversions are automatic as long as the data types involved are built-in types.

What happens when they are user-defined data types?

Copyrighted material

188e Object-Oriented Programming with C++

Consider the following statement that adds two objects and then assigns the result to a
third object.

w3 = vl + vi; ffovl, v2 and v3 are closs type objects

When the objects are of the same class type, the operations of addition and assignment
are carried out smoothly and the compiler doezs not make any complaints. We have seen, in
the case of class objects, that the values of all the data members of the right-hand object are
simply copied into the corresponding members of the object on the left-hand. What if one of
the operands is an object and the other is a built-in type variable? Or, what if they belong to
two different classes?

Since the user-defined data types are designed by us to suit our requirements, the compiler
does not support automatic type conversions for such data types. We must, therefore, design
the conversion routines by ourselves, if such operations are required.

Three types of situations might arise in the data conversion between uncompatible types:

1. Conversion from basic type to class type.
2. Conversion from class type to basic type.
3. Conversion from one class type to another elass type.

We sghall discuss all the three cases in detail.

Basic to Class Type

The conversion from basic type to class type is easy to accomplish. It may be recalled that
the use of constructors was illustrated in a number of examples to initialize objects. For
example, a constructor was used to build a vector object from an int type array. Similarly,
we used another constructor to build a string type object from a char® type variable. These
are all examples where constructors perform a defacto type conversion from the argument's
type to the constructor's class type.

Consider the following constructor;

string :: string(char *a)

{
length = strlen(a);
P = new char[length+1];
strepy(P,a);

}

This constructor builds a string tyvpe object from a char* tyvpe variable a. The variables
length and p are data members of the class string. Once this constructor has been defined

Copyrighted material

Operator Dverloading and Type Conversions @189

in the string class, it can be used for conversion from char® type to string type. Example:
string 51, s5&;
char* namel = "IBM PC";
char* namez = “Apple Computers™;
s1 = string(namel);
52 = name?;
The statement

sl = string(namel);

first converts namel from char* type to string type and then assigns the string type
values to the object 81. The statement

s¢ = nameZ;
also does the same job by invoking the constructor implicitly.

Let us consider another example of converting an int type to a elass type.

class time
{
int hrs;
int mins;
public:
time(int t) /[constructor
!
hours = t/60; fft in minutes
minsg = t%60;
I
s
The following conversion statements can be used in a function:
time T1; J/ object T1 created
int duration = B85;
Tl = duration; f/ int to class type

After this conversion, the hrs member of T1 will contain a value of 1 and mins member
a value of 25, denoting 1 hours and 25 minutes,

Copyrighted material

190 & Object-Oriented Programming with C++

rrole

The constructors used for the type conversion take a single argument whose type is to be
converted.

In both the examples, the lefi-hand operaicl of = operator 15 aiwayz a class vhjoct,
Therefore, we can also accomplish this conversion using an overloaded = operator.

Class to Basic Type

The constructors did a fine job in type conversion from a basic to class tvpe. What about the
conversion from a class to basic type? The constructor functions de nol support this operation,
Luckily, C++ allows us to define an overloaded casting operator that could be used to convert
a class type data to a basic type. The general form of an overloaded casting operator function,
usually referred to as a conversion funcfion, is:

operator typename()

cese» (Fumction statements)

EE 4 RS

)

This function converts a class type data to fypename, For example, the operator double()
converts a class object to type double, the operator int() converts a class type object to
type int, and s0 on.

Consider the following conversion function:

vector :: operator double()
{
double sum = 0
for{int i=0; i<size; i++)
sum = sum + v[i] * v[i];
return sqrt(sum);

}

This function converts a vector to the corresponding scalar magnitude. Recall that the
magnitude of a vector is given by the square root of the =um of the squares of its components.
The operator double() can be used as follows:

double length = double(Vl);

or
double length = ¥1;

Copyrighted material

Operator Overloading and Type Conversions *191

where V1 is an object of type vector. Both the statements have exactly the same effect.
When the compiler encounters a statement that requires the conversion of a class type to a
basic type, it quietly calls the casting operator funetion to do the job.

The casting operator function should satisfy the following conditions:

® [t must be a elass member.
®» [t must not =pecify a return type.
® [t must not have any arguments.

Since it is a member function, it is invoked by the object and, therefore, the values used
for conversion inside the function belong to the object that invoked the function. This means
that the function does not need an argument.

In the string example described in the previous secvon, we ran do the converzion from
string to char®* a= follows:

string :: operator char*()
{

)

return{p);

One Class to Another t lass Type

We have just seen data conversion techniques from a basic to class type and a class to basic
type. But there are situations where we would like to convert one class type data to another
class type.

Example:

ogbjX = objY; /[objects of different types

objX is an object of class X and objY is an object of class Y. The elass Y type data is

converted to the elass X type data and the converted value is assigned to the objX. Since
the conversion takes place from class Y to elass X, Y is known as the source class and X is
known as the destination class.

Such conversions between objects of different classes can be carried out by either a
constructor or a conversion function. The compiler treats them the s=ame way. Then, how do
we decide which form to use? It depends upon where we want the type-conversion function
to be located in the source class or in the destination class.

We know that the casting operator function

operator typename()

Copyrighted material

192 Object-Oriented Programming with C++

converts the class object of which it is a member to typename. The tvpename may be a built-
in type or a user-defined one (another class type). In the case of conversions between objects,
typename refers to the destination class. Therefore, when a class needs to be converted, a
casting operator function can be used (i.e. source class). The conversion takes place in the
source class and the result is given to the destination class object.

Now consider a single-argument constructor function which serves as an instruction for
converting the ﬂrgumenf'a type to the class type of which it is @ member. This implies that
the argument belongs to the source class and is passed to the destination class for conversion.
This makes it necessary that the conversion constructor be placed in the destination class.
Figure 7.2 illustrates these two approaches.

T objx = objy WY isa source class
f [Class ¥
r casting oparator
convered value of functian .
| type X Conversion here
{source class)
Class X Class Y
Constructor |, dala access
function | argument of functions
Converslon here type Y
(destinaton class)

DT S s |

Table 7.3 provides a summary of all the three conversions. It shows that the conversion
from a class to any other type (or any other class) should make use of a casting operator in
the source class. On the other hand, to perform the conversion from any other type/class to
a class type, a constructor should be used in the destination class.

Table 7.3 Type conversions

Conversion required | Conversion takes place in
' Source class Destination class
Basic =* class Not applicable Constructor
Clasz = basic Casting operator T -hTL:p_;Iu:uhl: .
Class =¥ class I Casting operator I Constructor

When a conversion using a constructor is performed in the destination class, we must be
able to access the data members of the object sent (by the source class) as an argument.
Since data members of the source class are private, we must use special access functions in
the source class to facilitate its data flow to the destination class.

Copyrighted material

A Data Conversion Example

Operater Overloading and Type Conversions

2193

Let us consider an example of an inventory of products in store. One way of recording the
details of the products is to record their code number, total items in the stock and the cost of
each item. Another approach is to just specify the item code and the value of the item in the
stock. The example shown in Program 7.5 uses two classes and shows how to convert data of

one type to another.

) DATA CONYERSIONS

#finclude =iostream>
using namespace std;
class invent?

class inventl

{

int code:

int items;

float price;
public:

LB
'
Il 'll

.I.-' '_,-'

destination class declared

source closs

{7 item code

na..of tEems
cost of each item

inventl(int a, int b, float c)

{
code = a;
Ttens = O3
price = ¢3

}

vold putdata()

{

cout << “Code:

cout == “[tems:
cout << *Walue:

}

int getcode() {return code;}
int getitems({) {return items:}

float getprice() {return price;}

operator fleat{) {return{items * price);}

/* operator invent2()

|II ll.

<< cofde << "\n";
<< {tems =< "\p¥;
<< price << "\n";

inventl to invent?

i
invent? temp;
temp.code = code;
temp.value = price * items;
return temp;
) *f
ha f// End of source class

(Contd)

Copyrighted material

Copyrighted material

Operator Overloading and Type Conversions 0195

Following is the output of Program 7.5:

Product details-inventl type
Code: 100

[tems: 5

Value: 140

Stock value

Value = 700

Product details-invent? type
Code: 100

Value: 700

-~ nrote ~

We have used the conversion function

operator float()
in the class inventl to convert the inventl type data to a float. The constructor

invent2 (inventl)
is used in the class invent2 to convert the inventl type data to the invent2 type data.

Remember that we can also use the casting operator function
operator inventZ()
in the class inventl to convert inventl type to invent2 type. However, it is important

that we do not use both the constructor and the casting operator for the same type
conversion, since this introduces an ambiguity as to how the conversion should be

kperfurmed. y

\ SUMMARY -

Operator overloading is one of the important features of C++ language. It is called
compile time polymorphism.

& Using overloading feature we can add two user defined data types such as objects, with
the same syntax, just as basic data types.

& We can overload almost all the C++ operators except the following:
* class member access operators(,, .*)
+ scope resolution operator (::)

196 @ Object-Oriented Programming with C++

= size operator{sizeofl)
» conditional operator(?:)

& Operator overloading is done with the help of a special function, called operator function,
which describes the special task to an operator.

&» There are certain restrictions and limitations in overloading operators. Operator

functions must either be member functions (non-static) or friend functions. The
overloading operator must have at least one operand that is of user-defined type.

% The compiler does not support automatic type conversions for the user defined data
tvpes. We can use casting operator functions to achieve this. .

¢ The casting operator function should satisfy the following conditions:
s [t must be a class member.
= [t must not specify a return type.
= [t must not have any arguments.

Key Terms

» arithmetic notation » operator
» hinary operators » operator function
» casting » operator overloading
» casting operator » scalar multiplication
» constructor » semantics
> conversion function » sizeof
» destination class » source class
» friend » syntax
» friend function » temporary object
» functional notation » type conversion
» manipulating strings > unary operators
I Review Questions

7.1 What is operator overloading ?
7.2 Why is it necessary to overload an operator?
7.3 What is an operator function? Describe the syntax of an operator function.

T4 How many arguments are required in the definition of an overloaded unary
operator?

Operator Overloading and Type Conversions ®197

7.5 A class alpha has a constructor as follows:

alphafint a, double b);

Can we use this constructor fo convert types?

7.6 What is a conversion function How is if created Explain its syntax.

7.7 A friend function cannot be used to overload the assignment operator =. Explain
why#

7.8 When is a friend function compulsory? Give an example.

7.9 We have two classes X and Y. If a is an object of X and b is an object of ¥ and we
want to say a = b; What type of conversion routine should be used and where?

T7.10 State whether the following statements are TRUE or FALSE.

(a)

(b}
ie)
(d)

(e)

{f)
(g)

(h)

Using the operator overloading concept, we can change the meaning of an
operator.

Operator overloading works when applied to class objects only.

Friend functions cannot be used to overload operators.

When using an overloaded binary operator, the left operand is implicitly
passed to the member function.

The overloaded operator must have at least one operand that is user-defined
type.

Operator functions never return a value,

Through operator overloading, a class type data can be converted to a basic
tvpe data.

A constructor can be used to convert a basic fype to a class iype data.

I Debugging Exercises

7.1 Identify the error in the following program.

finclude <iostream.h=
class Space

{

int mCount;

public:

Space()
{
mCount = 0;

!

Space operator ++()

{

mCount++;

198#

1.2

Object-Oriented Programming with C+4

return Space(mCount):

}

ks

void main()

{
Space objSpace;
objSpace++;

I

Identify the error in the following program.

fFinclude =iostream.h=

enum WeekDays

{
maunday,
mMonday,
mTuesday,
mWednesday,
mThursday,
mFriday,
miaturday

tH

bool op==(WeekDaysk wl, WeekDayshk wZ)

if{wl== mSunday L& w2 == mSunday)
return 1;

else 1f(wl== mSunday B& w2 == mSunday)
return 1;

else if(wl== mSunday &R w2 == mSunday)
return 1;

else if(wl== mSunday && wZ == mSunday)
return 1;

glse if(wl== mSunday A& w2 == mSunday)
return 1;

else if(wl== mSunday L& w2 == mSunday)
return 1;

else if(wl== mSunday && w2 == mSunday)
return 1;

else
return 0;

7.3

Operator Overloading and Type Conversions

void main()
{
WeekDays wl = mSunday, w? = mSunday;
if(wl==w2)
cout << "Same day";
else
cout << "Different day";
}
Identify the error in the following program.

finclude =iostream.h=
class Room

{

float mWidth;

float mlLength;
public:

Room()

{

|

Room(float w, float h)
:midth{w), mLength(h)

[

}
operator float()
{
return (float)mWidth * mLength:
1

float getWidth()

i
!

float getLength()
(

return mLength;

bs

yoid main()

#199

Copyrighted material

200@

Object-Ortented Programming with C++

Room objRooml (2.5, 2.5);
float fTotalArea;
fTotalArea = objRooml;
cout << fTotalArea;

Programming Exercises

NOTE:
code.

7.1

7.2

7.3

7.4
7.0

For all the exercises that follow, build a demonstration program to test your

Create a class FLOAT that containg one
float data member. Overload all the four Point {r, &)
arithmetic operators so thal they operate Radius B

on the objects of FLOAT.,

Design a closs Polar which describes a
point in the plane using polar coordinates
radius and angle. A point in polar
coordinates is shown in Fig. 7.3.
Use the overloaded + operator to add twe Anghs
objects of Polar, L
Nate that we cannot add polar values of .
two points directly. This requires first the
conversion of points into rectangular co-
ordinates, then adding the corresponding
reciangular co-ordinates and finally
converting the result back into polar co-ordinates. You need to use the following
trigonometric formidlae:

x = r * cos{a);

y = r * sin(a);

a = atan{y/x); // arc tangent

r o= sqri(x*x + y*y);
Create a class MAT of size m x n. Define all possible malrix operations for MAT
tvpe objects.

Define a elass String. Use overloaded == operator lo compare two strings.

Define two classes Polar and Rectangle to represent poinis in the polar and
rectangle systems. Use conversion routines to convert from one system lo the other,

Fig. 7.3 <« Polar coordinales of a poin! I

Copyrighted material

