Inheritance: I
‘ Extending Classes

Y ¥ Y Y Y Y Y Y YYYYYYY

Key Concepts

Heusahility

Inheritance

Single inheritance

Multiple inheritance
Multilevel inheritance
Hybrid inhertance
Hierarchical imheritance
Defiriing a derived class
Inhenting prvate members
Virtual base class

Dhrect base class

Indirect base class

Abstract class

Defining derived class constructors

Mesting of classes

8.1 Introduction

Reusability is yet another important
feature of O0P. It is always nice if we could
reuse something that already exists rather
than trying to create the same all over
again. It would not only save time and
money but also reduce frustration and
increase reliability. For instance, the reuse
of a class that has already been tested,
debugged and used many times can save
us the effort of developing and testing the
same again.

Fortunately, C++ strongly supports the
concept of reusability. The C++ classes can
be reused in several ways, Once a class has
been written and tested, it can be adapted
by other programmers to suit their
requirements. This is basically done by
creating new classes, reusing the properties
of the existing ones. The mechanism of
deriving a new class from an old one is
called inheritance (or derivation). The old
class is referred to as the base class and
the new one is called the derived closs or
subclass,

202e Ohject-Oriented Programming with C++

The derived class inherits some or all of the traits from the base class. A class can also
inherit properties from more than one class or from more than one level. A derived class
with only one base class, is called single inheritance and one with several base classes is
called multiple inheritance. On the other hand, the traits of one clazs may be inherited by
more than one class. This process is known as hierarchical inheritance. The mechanism of
deriving a class from another ‘derived class’ is known as multilevel inheritance. Figure 8.1
shows various forms of inheritance that could be used for writing extensible programs, The
direction of arrow indicates the direction of inheritance. (Some authors show the arrow in
opposite direction meaning “inherited from”.)

| S——

{a) Single inhertance

] [[+

|-
-t

| i
c | B | | C D
() Mustipde iniritang {c) Hisrarchical inharitance
A | A |
|
B B C

B N

{d) Multievel inheritance : {e) Hybnd inheritance

Fig. B.1 < Forms of inheritance i

IB.Z Defining Derived Classes

A derived class can be defined by specifying its relationship with the base class in addition
to its own details. The general form of defining a derived class is:

Copyrighted material

Inheritance; Extending Classes 203

class derived-closs-nome : visibility-mode base-class-name

{
R
..... /{ members of derived closs

cesedff
b
The colon indicates that the derived-class-name is derived from the base-class-name. The
visibility-mode is optional and, if present, may be either private or publie. The default
visibility-mode is private. Visibility mode specifies whether the features of the base class
are privately derived or publicly derived. :

Examples:

class ABC: private XYZ [/ private derivation
1

members of ABC

class ABC: public XYZ [/ public derivation

| members of ABC

i

class ABC: XYZ /! private derivation by defoult
| members of ABC

bs

When a base class is privately inherited by a derived class, ‘public members’ of the base
class become ‘private members’ of the derived class and therefore the public members of the
base class can only be accessed by the member functions of the derived class. They are
inaccessible to the objects of the derived class. Remember, a public member of a class can be
accessed by its own objects using the dot operator. The result is that no member of the base
class is accessible to the objects of the derived class.

On the other hand, when the base class is publicly inherited, ‘public members’ of the
base class become "public members’ of the derived class and therefore they are accessible to
the ohjectz of the derived class. In both the cases, the private members are not inherited and
therefore, the private members of a base class will never become the members of its derived
class.

In inheritance, some of the base class data elements and member functions are 'inherited’
into the derived class. We can add our own data and member functions and thus extend the

204» Object-Oriented F‘rngrurﬁming with O++

[]

functionality of the base class. Inheritance, when used to modify and extend the capabilities
of the existing classes, becomes a very powerful tool for incremental program development.

Ia.a Single Inheritance

Let us consider a simple example to illustrate inheritance, Program 8.1 shows a base class
B and a derived class D. The class B contains one private data member, one public data
member, and three public member functions. The class D contains one private data member
and two public member functions.

SINGLE TNHERITANCE : PUBLIC

finclude <iostream=

using namespace std;

class B
i
int a; {/ private; not imheritable
public:
int b; ' !/ public; ready for inheritonce

void get ab();
int get a(void);
void show a(void);

ba
class 0 : public B / public derivation

{
int ¢
public;
void mul {vaid):
yoid display(void);
|
T T e
void B :: get ab{void)
i
A= Bi b= 10z
!
int B :: get af)

{

return a;
I
void B :: show a()
{

(Corntd)

Copyrighted material

cout << "a = " << g << "\pn";

1

void O z: mul()

{
c=b*geta();

1

void D :: display()

{ .
cout << "a = " << get_a() << "\n";
cout =< "h = ® << b << "\n";
cout =< "¢ = " << ¢ << "\n\n";

}

e

int main()

{
0 d;
d.get_ab(};
d.mul();
d.show_a();
d.display();
d.b = 20;
d.mul{);
d.display();
return 0;

}

Given below is the output of Program 8.1:

a=5

a=5

B = 10

c = 50

a=25

b = 20
= 100

inheritance: Extending Classes

PROGRAM 8.1

The class I} i= a public derivation of the base class B. Therefore, I) inherits all the public
members of B and retains their visibility. Thus a public member of the base class B is also
a public member of the derived class D. The private members of B cannot be inherited

Copyrighted material

206® Object-Oriented Programming with C++

by D. The class D, in effect, will have more members than what it contains at the time of
declaration as shown in Fig. 8.2,

Class D

Private Saction

L

Public Section
T T T Inharited B
i b i fram B 2
! get_abi() !
i l
1 _ai) l
{ [showan | |

mui()

digplay()

Fig. 82 < Adding more members to @ class (by public derivation)

The program illustrates that the objects of class I) have access to all the public members
of B. Let us have a look at the functions show_a() and mul():

void show_a()
{

void mul()
{

Although the data member a is private in B and cannot be inherited, objects of D are able
to access it through an inherited member function of B.

cout << "a = " =< g << "\n";

c="hb*get_a(); [fe=b™*a

Let us now consider the case of private derivation.

Inheritance: Extending Classes —8 207

class B

{
int a;
public:
int b;

void get_ab();
void get a();

vold show a();
F

class D : private B /[private derivation
{
int c;
public:
void mul();
void display():
|H

The membership of the derived class D is shown in Fig. 8.3. In private derivation, the
public members of the base class become private members of the derived class. Therefore,
the objects of I can not have direet access to the public member functions of B.

Class D

Fig. 8.3 <3 Adding more members to a class (by private derivation)

Copyrighted material

208 e Object-Oriented Programming with C++
The statements such as

d.get_ab(); // get_ab{) is private
d.get_a(); /i s0 also get_af)
~ d.show_a(); /f and show af)

will not work. However, these functions can be used inside mul() and display() like the
normal functions as shown below:

void mul()

get_ab();
c = b*getal);
}

void display()

{
show_a(); // outputs value of 'a’
cout =< "h = ® << b << "\p"
g "p = W ge ¢ o2 l’l..n"‘nli

}

Program 8.2 incorporates these modifications for private derivation. Please compare this
with Program 8.1,

Copyrighted material

Inheritance: Extending Classes

public:
void mul {void);
void display(void);

:n1d B :: get_ab(void)

cout << "Enter values for a and b:";
cin == a == b;

Teadal

g ¥ 1l

)
int B :: get_a()

return a;
!
void B :: show a()
{

cout =< g = " <2< j << '\n';
i
void D :: mul() : T ':.'
{ .

get_ab(); .

c=b*getaf); /{ 'a' connot be used divectly’ - oc
I / el Ak e 0 bl Rl

gl orr 17 %0 4 @ mdi R ErUIN? LAy JI'L:.-

void D :: display() NI R L frf e
{ d g

show_a(); [/ outputs value of 'a’

cout << "h = " << ph << "\n" :

=< "¢ = " << ¢ << "\n\n";

)
[=mmmmmm e e
:nt main() _ e e 3

Dd; - i

J/ d.get_ab(); NON'T WORK |

d.mul();

/f d.show a(); WON'T WORK

d.display();

(Contd)

Copyrighted material

210@ Object-Oriented Programming with C++

[/ d.b = 20; WON'T WORK; b has become private
d.mul();
d.display();

return 0;

PROGRAM 8.2

The output of Program 8.2 would be:

Enter values for a and b:5 10

a=»5

b = 10

c = 50

Enter values for a and b:12 20
a=12

b = 20

c = 240

Suppose a base class and a derived class define a function of the same name. What will
happen when a derived class object invokes the function?. In such cases, the derived clazs
function supersedes the base class definition. The base class function. will be called only if
the derived class does not redefine the function.

IE.-’i Making a Private Member Inheritable

We have just seen how to increase the capabilities of an existing class without modifying it.
We have also seen that a private member of a base class cannot be inherited and therefore
it is not available for the derived class directly. What do we do if the private data needs to
be inherited by a derived clasas? This can be accomplished by modifying the visibility limit of
the private member by making it public. This would make it accessible to all the other
functions of the program, thus taking away the advantage of data hiding.

C++ provides a third visthility modifier, protected, which zerve a limited purpose in
inheritance, A member declared as protected is accessible by the member functions within
its class and any class immediately derived from it. It cannot be accessed by the functions
outside these two classes, A class can now usge all the three visibility modes as illustrated
below:

class alpha
{
private: /f optional

Py /f visible to member functions

Inheritance: Extending Classes €211

“urie J[within its closs
protected:
[/ visible to member functions
. [f of its own ond derived closs
public:
ceeas [/ visible to oll functions
- [/ in the program

ks

When a protected member is inherited in publie mode, it becomes protected in the
derived class too and therefore is accessible by the member functions of the derived class. It
is also ready for further inheritance. A protected member, inherited in the private mode
derivation, becomes private in the derived class. Although it is available to the member
functions of the derived class, it is not available for further inheritance (since private
members cannot be inherited). Figure 8.4 iz the pictorial representation for the two levels
of derivation.

Mot inheritable X . X, Mot inharitable

. class D1 : public B class D2 : private B

| | Private | _ i Private s

' | Protected | i Protected
—_— . j

. | - Public) : Public |

class X : public D1 : protected D2

|
| Private i
J

Protectad

Public

212e Object-Oriented Programming with C++

The keywords private, protected, and public may appear in any order and any number
of times in the declaration of a class. For example,

class beta

protected:

LN O I

rrrrr

is a valid class definition.
However, the normal practice is to use them as follows:
class beta

cenas {f private by default

It is also possible to inherit a base class in protected mode (known as profected derivation).
In protected derivation, both the public and protected members of the base class become
protected members of the derived class. Table 8.1 summarizes how the visibility of base
class members undergoes modifications in all the three types of derivation.

Now let us review the access control to the private and protected members of a class.
What are the various functions that can have access to these members? They could be:

1. A function that is a friend of the class.
2. A member function of a class that is a friend of the class,
3. A member function of a derived class.

While the friend functions and the member functions of a friend class can have direct
access to both the private and protected data, the member funetions of a derived class can
directly access only the protected data. However, they can access the private data through
the member functions of the base class. Figure B.5 illustrates how the access control

Copyrighted material

Inheritance: Extending Classes @213

mechanism works in various situations. A simplified view of access control to the members
of a class iz shown in Fig. 8.6.

Table 8.1 Visibility of inherited members

Derived class visibility
Base class visibility Public Private Protected
derivaiion derivation derivaiion
Private —y Mot inherited i Not inherited Mot inherited
Protected — Protected Private Protected
Public —— Public Private Protected
class X
friend class Y
class ¥
. private

i LU e - data [ropemomes o s

i e e ’

I -~ protected " o=

E ity data -..—‘-:- S [

* L

P NN |

: ! R y friend of X

I 1 rd E L]

! i 5 . i %

[} : |'I "'\- ""

: I class Z § . K i

I 1 ! 1\. 5

: _I_L_] .-": ll"'\- k"'

1 L ._.d [[

: - !

: . function 1

i friend of X

[EE 1

Inharited from X

Fig. 8.5 < Access mechanism in classes

IB.E Multilevel Inheritance

It is not uncommon that a class is derived from another derived class as shown in Fig. 8.7.
The class A serves as a base class for the derived class B, which in turn serves as a base
class for the derived class C. The class B iz known as intermediate base class since it provides
a link for the inheritance between A and C. The chain ABC is known as inheritance path.

2140 Object-Oriented Programming with C++

All users

derived class —— own member functions
member and friendly functions
functions and classes

Fig. B6 <= A simple view of access control to the members of a class]

Base class A I Grandfathar

Intermiediale
base class B Father
N
[)
Derived ciass | c Child
e 1

Fig. 8.7 « Multilevel inheritance

- A derived class with multilevel inheritance is declared as follows:

class Af..... | B /! Base class
class B: public A {.....}; // B derived from A
class C: public B {.....}; /€ derived from B

This process can be extended to any number of levels.

Let us consider a simple example. Assume that the test results of a bateh of students are
stored in three different classes. Class student stores the roll-number, class test stores the
marks obtained in two subjects and class result contains the total marks obtained in the
test. The class result can inherit the details of the marks obtained in the test and the roll-
number of students through multilevel inheritance. Example:

Inhentance; Extending Classes _ *215

class student
1
protected:
int roll_number;
public:
void get number{int);
void put_number{void);

Qnid student :: get_number(int a) -
[

L]

|
void student :: put_number()
{

b

roll_number = a;

cout << "Roll Mumber: " << roll number << "\n";

class test : public student {/ First level derivation
{
protected:
float subl;
float subZ;
public:
void get marks({float, float);
void put marks(void);

bs
void test :: get marks(float x, float y)
(
subl = x;
subd = y;
;
void test :: put_marks()
{
cout =< "Marks in SUBl = " <= subl =< "\n";
cout =< *"Marks in SUB2 = " << sub? =< "\n";
} .
class result : public test /f Second level derivation
{
float total; /! private by defoult
public:

void display(void);
[

The class result, after inheritance from ‘grandfather’ through ‘father’, would contain the
following members:

Copyrighted material

2168 Ohject-Oriented Programming with C++

private:
float total; J/{ own member
protected:
int roll_number; // inherited from student vio test
float subl; J inherited from test
float sub2; /i inherited from test
public:
void get_number(int); // from student vig test
void put number(void); /{ from student vig test
void get marks(float, float); /! from test
void put_marks(void); [from test
void display(void); // own member

The inherited functions put_number() and put_marks() can be used in the definition
of display() function:

void result :: display(void)

{
total = subl + sub2;
put_number() ;
put_marks(};
cout << "Total = " << total =< "\n";

)
Here iz a simple main() program:

int main()

result studentl; // student]l created
studentl.get number(111);

studentl.get marks(75.0, 59.5):

studentl.display();

return 0f

}
This will display the result of studentl. The complete program is shown in Program 8.3,

MULTILEVEL INHERITAWCE

#include <iostream=
using namespace std;

class student
(Contd)

Copyrighted maierial

Inheritance: Extending Classes *217

{
protected:
int roll_number;
public: .
void get_number{int);
void put number(void);
Vs

void student :: get number(int a)

{
}

void student :: put_number()

[
}

class test : public student [First level derivation
{
protected:
float subl;
float sub2;
public:
void get marks(float, float);
void put_marks(void);

rell number = a;

cout << "Roll Number: " << roll_number << "\n®;

B

void test :: get marks(float x, float y)

i -
subl = x;

sub2 = y; i
| -

void test :: put marks()

{
cout << "Marks in SUB1 = " << subl << "\n";
cout <= "Marks in SUBZ = " << subZ << "\n":

}

class result : public test J/ Second level derivation
{
float total; /f private by defoult
public:

} void display(void);
void result :: display(void)

{Contd)

Copyrighted material

218 Ohject-Oriented Programming with Ces

total = subl + sub2;

put_number() ;

put_marks();

cout =< "Total = * << total =< "\n";

|
int main()
result studentl; [/ studentl] created

studentl.get number(111);
studentl.get marks(75.0, 59.5);

studentl.display();

return 0;

Program 8.3 displays the following output:

Roll Mumber: 111
Marks in SUBl1 = 75
Marks in SUBZ = 539.5
Total = 134.5

IB.E Multiple Inheritance

PROGRAM 8.3

A class can inherit the attributes of two or more classes as shown in Fig. 8.8, This is known
as multiple inheritance, Multiple inheritance allows us to combine the features of several
existing classes as a starting point for defining new classes. It is like a child inheriting the

physical features of one parent and the intelligence of another.

B-1 B-2 B-n

Fig. 8.8 «= Multiple inheritance

Inheritance: Extending Classes 0219

The syntax of a derived class with multiple base classes is as follows:

class D: visibility B-1, visibility B-2 ...
!

+se0+(Body of D)

where, visibility may be either public or private. The base classes are separated by commas.
Example:

class P : public M, public N

{
public:
void display(void);

i
Classes M and N have been specified as follows:

class M
{

protected:
int m;
public:
void get m{int):
H
vold M :: get m(int x)
{

|

class N
[
protected:
int n;’
public:
void get _n(int);

m = X3

bi
void N :: get_n(int y)

[

220@ Object-Oriented Programming with C++
n=y:

The derived class P, as declared above, would, in effect, contain all the members of M and
N in addition to its own members as shown below:

class P
I -
protected:
int m; f! from M
int n; [/ from N
public:
void get m(int); J/ from M
void get_n(int); // from N
void display(veid); /| own member

H
The member funetion display() can be defined as follows:

void P :: display(void)

{
cout << "m = * << m << "\pn*;
cout =< "p = " == p =< "yp".
cout =< "m*n =" =< m*n << "\n";:

H

The main{) function which provides the user-interface may be written as follows:

main()

{
Pp:
p.get_m(10);
p.get_n(20);
p.display();

]

Program 8.4 shows the entire code illustrating how all the three classes are implemented
in multiple inheritance mode.

Inheritance: Extending Classes 2221

MULTIPLE INHERITANCE

#include <iostreams
using namespace std;

class M

{
protected:

int m;
public:

class N
{
protected:
int n;
public:
void get n(int);
H

class P : public M, public N
{
public:

void display(void);

void get m{int);

b

void M :: get_m{int x)
{

m= X3 -
|
void N :: get n(int y)
{ -
n =¥
}
void P :: display(void)
{
cout << "m = " << g << "\n";
cout == "p = " << g << "\p";
cout == "m*n = " << m*n << "\n";
)
int main()

{
(Contd)

2228 Object-Oriented Programming with C++

P p:

p.get m(10);
p.get_n{20);
p.display();

return 0;

PROGRAM .4

The output of Program 8.4 would be:

m= 10
n=20
m*n = 200

Ambiguity Resolution in Inheritance

Occasionally, we may face a problem in using the multiple inheritance, when a funetion
with the same name appears in more than one base class. Consider the following two classes.

class M

{
public:

void display(void)
{

cout =< "Class Min";

}:
class N
{
public:
void display(void)
i
cout == "Class Nvn";
)
H

Which display() function is used by the derived class when we inherit these two classes?
We can solve this problem by defining a named instance within the derived class, using.the
class resolution operator with the function as shown below:

class P : public M, public N

Inheritance: Extending Classes €223
4

public:
void display(void) // overrides display() of MW and N
{
M :: display();
}

B
We ean now use the derived class as follows:

int main()
{
Fops
| p.display();

Ambiguity may also arise in single inheritance applications. For instance, consider the
following situation:

class A

{
public:
void display()
{

cout << "A\n";
}
I
class B : public A

{
public;

void display()
{

}

cout =< "B\n";
bs

In this case, the function in the derived class overrides the inherited function and,
therefore, a simple call to display() by B type object will invoke function defined in B only.

However, we may invoke the function defined in A by using the scope resolution operator to
specify the class.

Example:

int main()
{

2240 Object-Oriented Programming with C++

B b; Jf derived class object
b.display(); /{ invokes display() in B
b.A::display(); [/ invokes display() in A
b.B::display(); [/ invokes display() in B
return 0

I
This will produce the following output:

B
A
B

IB.T Hierarchical Inheritance

We have discussed so far how inheritance can be used to modify a class when it did not
satisfy the requirements of a particular problem on hand. Additional memberz are added
through inheritance to extend the capabilities of a class. Another interesting application of
inheritance is to use it as a support to the hierarchical design of a program. Many
programming problems can be cast into a hierarchy where certain features of one level are
ghared by many others below that level.

As an example, Fig. 8.9 shows a hierarchical elassification of students in a university.
Another example could be the classification of accounts in a eommercial bank as shown in
Fig. 8.10. All the students have certain things in common and, similarly, all the accounts
possess certain common features.

Sudenlts
R LR
¢ ,
x,-"
e |
. — + . € 0
Arts - : Enginearing | Medical
| - - | L
P I B N
Mech. Elac. Clwll

Fig- 8.9 & Hierarchical classification of students I

Copyrighted material

At

Savings account

e

Inheritance: Extending Classes

Mediurm-berm.

Long-term

Fig. 8.10 <> Classification of hank accounts

In C++, such problems can be easily converted into class hierarchies. The base class will
include all the features that are common to the subelasses. A subclass can be constructed by
inheriting the properties of the base class, A subclass can serve as a base class for the lower

level elasses and so on.

8.8 Hybrid Inheritance

There could be situations
where we need to apply two
or more types of inheritance
to design a program. For
ingtance, consider the case of
pracessing the student
results diseussed in Sec. 8.5.
Agsume that we have to give
weightage for sports before
finahising the results. The
weightage for sports is stored
in a separate class called
sports. The new irheritance
relationship between the
various classes would be as
shown in Fig. 8.11.

I

+

[= |

T

7

b
b
L]

Fig. 8.11 = Multilevel, multiple inheritance '

226% Ohject-Oriented Programming with C++

The sports class might look like:

class sports

{

protected:
float score;

public:
void get_score(float);
void put_score(void);

HE

The result will have both the multilevel and multiple inheritances and its declaration
would be as follows:

class result : public test, public sports

Where test itself is a derived class from student. That is
class test : public student

Program 8.5 illustrates the implementation of both multilevel and multiple inheritance.

HYBRID INHERITANCE

finclude <iostream
using namespace std; N

class student

{

protected:
int roll_number;
public:
void get_number{int a)
1

rol]_number = a;
(Contd)

Copyrighted material

|

void put_number(void)

I

Inheritance: Extending Classes

€227

cout =< "Roll No: " << roll_number << *\n";

!
}3

class test : public student

protected:
float partl, part2;
public:
void get_marks(float x, float y)
{
partl = x; part2 = y;
1
void put marks(void)
{

cout << “"Marks obtained: " << -"\n"
<< "Partl = " << partl =< "\p"
<< "Part? = " << part? =< "\n";

1
}3
class sports
{
protected:
float score;
public:
void get_score(float s)
{
score = 5;
)
void put_score(void)
{
cout == "Sports wt:
)
F

class result : public test, public sports
{
float total;
public:
void display(void);

" << score =< "\n\n";

(Contd)

Copyrighted material

228% Object-Oriented Programming with C++

H

void result :: display(void)
]

total = partl + part2 + score;

put_number();
put marks();
put_scorel);

cout << "Total Score: " =< total << "\n";

]

int main()

I
result student 1;
student 1.get number{1234);
student 1.get marks(27.5, 33.0);
student 1.get score(6.0);
student _1.display(};

return 0;

PROGRAM B.5

Here is the output of Program 8.5:

Roll No: 1234
Marks obtained:
Partl = 27.5
Part? = 33
Sports wt: 6

Total Score: B6.5

IE.S‘ Virtual Base Classes

We have just discussed a situation which would require the use of both the multiple and
multilevel inheritance. Consider a situation where all the three kinds of inheritance, namely,
multilevel, multiple and hierarchical inheritance, are involved. This is illustrated in
Fig. 8.12. The ‘child’ has two direct base classes ‘parentl’ and ‘parent2’ which themselves
have a common base class ‘grandparent’. The ‘child' inherits the traits of ‘grandparent’ via
two separate paths. It can also inherit directly as shown by the broken line. The ‘grandparent’
is sometimes referred to as indirect base class.

Inheritance: Extending Classes 2229

(Grandparent

i
- Child

Fig. 8.12 - e Multipath inhertitance

Inheritance by the ‘child’ as shown in Fig. 8.12 might pose some problems. All the public
and protected members of ‘grandparent’ are inherited into ‘child’ twice, first via ‘parentl’
and again via ‘parent2’, This means, ‘child’ would have duplicate sets of the members inherited
from ‘grandparent’. This introduces ambiguity and should be avoided.

The duplication of inherited members due to these multiple paths can be avoided by
making the common base class (ancestor class) as virfual base class while declaring the
direct or intermediate base classes as shown below:

class A /{ grandparent
{

}!

class Bl : virtual public A /! parentl

{

I
class B2 : public virtual A /! parentZ
{

EER NI

. ceeas
class C : public Bl, public B2 // child

{
/[only one copy of A
J/ will be inherited

When a class is made a virtual base class, C++ takes necessary care to see that only one
copy of that class is inherited, regardless of how many inheritance paths exist between the
virtual base class and a derived class,

230® Ohject-Oriented Programming with O+

For example, consider again the student

rnote results processing system discussed in Sec. 8.8.
The keywords virtual and public | Assume that the class sports derives the
may be used in either order. roll_number from the class student. Then, the
inheritance relationship will be as shown in
Fig. 8.13.
Shucieni
As virtual basae class As virtual base class
best Sports
result

Fig 813 < Virtual hase class

A program to implement the concept of virtual base class is illustrated in Program 8.6.

VIRTUAL BASE CLASS

f#include =iostream=

using namespace std;

class student
B .
protected:
int roll_nwember;
publie:
void get_number(int a)
.["

(Contd)

Inheritance: Extending Classes

roll_number = a;

)
void put_number(void)

{
}

cout =< "Roll No: " << roll number << *\n";

class test : virtual public student

protected:
float partl, part2;
public:
void get marks(float x, float y)
{
partl = x; part2 = y;:
}
void put_marks(void)
{
cout =< "Marks obtained: " << "\n"
<< "Part]l = " << partl << "\n"
<< "Part? = " << part? =< "\n";
1
F
class sports : public virtual student
{
protected:
float score;
public:

void get_score(float s)

score = §;
}
yoid put score(void)
| -

cout == “Sports wt: * =< score =< "\n\n";
}
bi

class result : public test, public sports
i
float total;

public:
void display(void);
|

®231

(Cantd)

Copyrighted material

2320 Object-Oriented Programmung with C++

}rnid result ;: display(void)
total = partl + part2 + score;

put_number();
put_marks():
put_score();

cout =< “"Total Score: " =< total =< "\n";

int main()

i
result student_1;
student 1.get number({678);
student 1.get marks(30.5, 25.5);
student l.get score(7.0);
student_1.display();

return 0;
'

PROGRAM 8.8

The output of Program 8.6 would be

Roll No: 678
Marks obtained:
Partl = 30.5
Part? = 25.5
Sport wt: 7

Total Score: 63

Iﬂ.lﬂ Abstract Classes

An abstract class is one that is not used to create objects. An abstract class is dEﬁigne-d only
to act as a base class (to be inherited by other classes). It is a design concept in program
development and provides a base upon which other classes may be built. In the previous
example, the student class is an abstract class since it was not used to create any objects.

Iﬂ.ll Constructors in Derived Classes

As we know, the constructors play an important role in initializing objects. We did not use
them earlier in the derived classes for the sake of simplicity. One important thing to note

Inheritance: Extending Classes 233

here is that, as long as no base class constructor takes any arguments, the derived class
need not have a constructor funection. However, if any base class contains a constructor with
one or more arguments, then it is mandatory for the derived class to have a constructor and
pass the arguments to the base class constructors. Remember, while applying inheritance
we usually create objects using the derived class. Thus, it makes sense for the derived class
to pass arguments to the base class constructor. When both the derived and base classes
contain constructors, the base constructor is executed first and then the constructor in the
derived class is executed.

In case of multiple inheritance, the base classes are constructed in the order in which
they appear in the declaration of the derived class. Similarly, in a multilevel inheritance,
the constructors will be executed in the order of inheritance.

Since the derived class takes the responsibility of supplying initial values to its base
classes, we supply the initial values that are required by all the classes together, when a
derived class object is declared. How are they passed to the base class constructors so that
they can do their job? C++ supports a special argument passing mechanism for such
situations.

The constructor of the derived class receives the entire list of values as its arguments and
paszes them on to the base constructors in the order in which they are declared in the
derived class. The base constructors are called and executed before executing the statements
in the body of the derived constructor.

The general form of defining a derived constructor is:

Derived-constructor (Arglistl, Arglist2, ... ArglistN, Arglist(D)

basel (arglistl), .J
base? (arglist2),

EERXR]

baseN(arglistN), arguments for base(N)

Body of derived constructor-= —

}

The header line of derived-constructor function contains two parts separated by a coloni(:),
The first part provides the declaration of the arguments that are passed to the derived-
consiructor and the second part listz the function calls to the base constructors.

baze Ifarglistl), bose2(arglist2) ... are function calls to base constructors basel(), base2(),
... and therefore arglistl, arglist2, ... etc. represent the actual parameters that are passed
to the base constructors. Arglist] through ArglistN are the argument declarations for base
constructors basel through baseN. ArglistD provides the parameters that are necessary to
initialize the members of the derived class.

234 e Object-Oriented Programming with C++

Example:

D{int al, int a2, float bl, float b2, int d1):
Alal, a?), J/* call to constructor A */
B(bl, b2) /* call to constructor B */

{

b

d = dl; [executes its own body

Alal, a2) invokes the base constructor A() and B(b1, b2) invokes another base constructor
B{). The constructor D{) supplies the values for these four arguments. In addition, it has

one argument of its own, The constructor D) has a total of five arguments. IM) may be
invoked as follows:

These values are assigned to various parameters by the constructor Di() as follows:

] — s al
12 —s a2
2.5 —s Bl

7.54 — b2
30 — dl
The conzstructors for virtual base classes are invoked before any non-virtual base classes.
If there are multiple virtual base classes, they are invoked in the order in which they are
declared. Any non-virtual bases are then constructed before the derived class constructor is
executed, See Table 8.2

Table B.2 Execution of base class constructors
Method of inheritance Order of execution

Class B: public A Al) ; base constructor

| Bi) ; derived constructor
H

class A : public B, public C Bi) ; base{first)

{ Ci) ; baselsecond)
I; Al) ; derived

class A : public B, virtual public C Ci) ; virtual base

i B) ; ordinary base

k Al) ; derived

Inheritance; Extending Classes €235

Program 8.7 illustrates how constructors are implemented when the classes are inherited.

CONSTRUCTORS IN DERIVED CLASS

#include <iostream>
using namespace std; .

class alpha
{
int x; .
public:
alpha(int i)
{
X = iz
cout =< "alpha initialized \n";
1
void show x(void)
[cout << *x = * << x << "\n%; }

F "

class beta
{
float y;
public:
beta(float j)
{
¥ = J;
cout =< "beta initialized \n";
}
void show y(void)
| cout << "y = ® << y << *\pn"; }

H
class gamma: public beta, public alpha
{
int m, n;
public:

gamma(int a, float b, int ¢, int d):
alpha(a), beta(b)
{

m= C:
n = d;
cout << "gamma initialized \n";

(Comtd)

Copyrighted material

236® Ohbject-Oriented Programming with Ce+

void show mn{void)

{
cout <= "m = " << '@m =< "\n"
cc "pom M ose plwe "'|.r|.i.
i
Is

int main{)
{
gamma g{5, 10.75, 20, 30);
cout =< "\n";
g.show x();
g.show ¥();
g.show mn(};

return 03

PROGRAM 8.7

The output of Program B.7 would be:

beta initialized
alpha initialized
gamma initialized

5
10.75
20

30

=T

riode

beta is initialized first, although it appears second in the derived constructor. This is
because it has been declared first in the derived class header line. Also, note that alphaia)
and beta(b) are function calls. Therefore, the parameters should not include types.

C++ supports another method of initializing the class objects. This method uses what is
known as initialization list in the constructor function. This takes the following form:

constructor (aorglist) : intielizotion-section

II
b

assignment-section

The assignmeni-section is nothing but the body of the constructor function and is used to
assign initial values to its data members. The part immediately following the colon is known

Inheritance: Extending Classes 2237

as the initialization section. We can use this section to provide initial values to the base
constructors and also to initialize its own class members. This means that we can use either
of the sections to initialize the data members of the constructors class. The initialization
section basically contains a list of initializations separated by commas. This list is Im:rwn as
initialization list. Consider a simple example:

class XYZ
{
int a:
int b;
publics
X¥Z(int 1, int j) : a(i), b(2 * §) { }
s

main()

{
}

This program will initialize a to 2 and b to 6. Note how the data members are initialized,
just by using the variable name followed by the initialization value enclozsed in the parenthesis
(like a function call). Any of the parameters of the argument list may be used as the
initialization value and the items in the list may be in any order. For example, the constructor
XYZ may also be written as:

XYZ x(2, 3);

XYZ(int i, int 3) & b(i), a{i + 3) { }

In this case, a will be initialized to 5 and b to 2. Remember, the data members are initialized
in the order of declaration, independent of the order in the initialization list. This enables us
to have statements such as

XYZ(int 1, int 3) : a(i), bla * 3) { |

Here a1z initialized to 2 and b to 6. REemember, a which has been declared first is imtialized
first and then its value is used to initialize b. However, the following will not work:

X¥Z{int i, int j) : b(i), a(b * j) { }
because the value of b is not available to a which is to be initialized first.
The following statements are also valid:

XYZ(int 1, int j) : a{i) {b = j;}
XYZ(int i, int J) { a = i; b = j;}

238 Ohject-Oriented Programming with C++

We can omit either section, if it iz not needed. Program 8.8 illustrates the use of

initialization lists in the base and derived constructors.

INITIALTZATION LIST IN CONSTRUCTORS

Finclude =iostream>
using namespace std;

class alpha

{
int x;
public:
alpha(int 1)
{
Xx=1;
cout << -"\n alpha constructed";
l
void show_alpha(void)
{
cout << ® x = " @< x << "\n";
}
}s
class beta
{
float p, q:
public:
beta{float a, float b): pla), qlbep)
{
cout << "\n beta constructed";
}
void show beta(void)
{
cout << " p =" =< p << “\n";
cout =< " g = " <= g =< "\n";
I
iH
class gamma : public beta, public alpha
{
int w,v;
public:

(et}

Inheritance: Extending Classes ®239

gamma(int a, int b, float c):
alpha(a*2), beta(c,c), ufa)
[v = b; cout =< "\n gamma constructed™; |}

void show gamma(void)

cout == " g
cout == " y

}

Boee y =< "\n";
= ==y =< ||'|||nu‘il

1:

int main()

{
gamma g2, 4, 2.5);

cout =< "\n\n Display member values " << "\n\n";
g.show_alpha();
g.show beta();

g.show_gamma();

return 0;

PROGRAM 8.8

The output of Program 8.8 would be:

beta constructed
alpha constructed
gamma constructed

Display member values

o O 0T m
oW om M
B3 A P B

st

The argument list of the derived constructor gamma contains only three parameters a,
b and e which are used to initialize the five data members contained in all the three
classes.

Copyrighted material

2408 Object-Oriented Programming with C++

IH.IE Member Classes: Nesting of Classes

Inheritance is the mechanism of deriving certain properties of one class inte another. We
have seen in detail how this is implemented using the concept of derived classes. C++ supports
vet another way of inheriting properties of one class into another. This approach takes a
view that an object can be a collection of many other oljects. That is, a class can contain
ohjects of other classes azs its members as shown below:

class alpha {....};

class beta {....};

class gamma

{
alpha a; /f a is an object of alpha class
beta b; /b is an object of beto class

All objects of gamma class will contain the objects a and b. This kind of relationship i=s
called containership or nesting. Creation of an object that contains anether object is very
different than the creation of an independent object. An independent object is created by its
constructor when it is declared with arguments. On the other hand, a nested object is created
in two stages. First, the member objects are created using their respective eonstructors and
then the other ‘ordinary' members are created. This means, constructors of all the member

ohjects should be called before its own constructor body is executed. This is accomplished
using an initialization list in the constructor of the nested class.
Example:

class gamma

alpha a; [a is object of alpha
beta b; [/ b is object of beto
public:

gamma(arglist): afarglistl), b(arglist2)
{
[constructor body
i
ks

arglist is the list of arguments that is to be supplied when a gamma object is defined. These
parameters are used for initializing the members of gamma. arglistl is the argument list

Inheritance: Extending Classes *241

for the constructor of a and arglist2 is the argument list for the constructor of b. arglisi]
and arglist2 may or may not use the arguments from arglisi. Remember, alarglist]) and
biarglist2) are function calls and therefore the arguments do not contain the data types.
They are simply variables or constants.

Example:
gamma({int %, int y, fleat z) : a(x), bix,z)
{
Assignment section(for ordinary other members)
1

We can use as many member objects as are required in a class. For each member ohject
we add a constructor call in the initializer list. The constructors of the member objects are
called in the order in which they are declared in the nested class.

~— —

% The mechanism of deriving a new class from an old clas= is called inheritance. Inheritance
provides the concept of reusability. The C++ classes can be reused using inheritance.

SUMMARY

&» 'The derived class inherits some or all of the properties of the base clasa.

4 A derived class with only one base class is called single inheritance.

4 A class can inherit properties from more than one class which is known as multiple
inheritance. ,

& A class can be derived from another derived class which is known as multilevel
inheritance.

4» When the properties of one class are inherited by more than one class, it is called
hierarchical inheritance.

& A private member of a class cannot be inherited either in public mode or in private
mode. _

& A protected member inherited in public mede becomes protected, whereas inherited in
private mode becomes private in the derived clazs.

4 A public member inherited in public mode becomes public, whereas inherited in private
mode becomes private in the derived class.

< The friend functions and the member functions of a friend class can directly access the

private and protected data.

Copyrighted material

242 e

=

I

Ohject-Orfented Programming woith O+

The member functions of a derived class can directly access only the protected and
public data. However, they can access the private data through the member functions
of the basze class.

Multipath inheritance may lead to duplication of inherited members from a ‘grandparent’
base class. This may be avoided by making the common base class a virtual base elass.

In multiple inheritance, the base classes are constructed in the order in which they
appear in the declaration of the derived class.

In multilevel inheritance, the constructors are executed in the order of inheritance.
A elass can contain objects of other classes. This is known as containership or nesting,

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YYYYYYY

ahstract class
access control
access mechani=m
ancestor class
aggignment section
bhase class

base constructor
child class
common hase class
containership
derivation

derived class
derived constructor
direct base class
dot operator
duplicate members
father class

friend
grandfather class
grandparent class
hierarchical inheritance
hybrid inheritance
indirect base class

inheritance

Key Terms

¥ ¥ ¥ ¥ ¥ Y Y ¥ ¥ ¥y Y Yy ¥y Yy Y Yy Yy Yy Y Y Y VY¥YY¥YY

inheritance path
initialization list
initialization section
intermediate base
member clagses
multilevel inheritance
multiple inheritance
nesting

private

private derivation
private members
privately derived
protected
protected members
public

public derivation
public members
publicly derived
reusability

single inheritance
subclass

virtual base class
visibility mode

vizibility modifier

Inheritance: Extending Classes €243

Review Questions

8.1 What does inheritance mean in C++F7
B.2 What are the different forms of inheritance? Give an example for each.
8.3 Describe the syntax of the single inheritance in C++.

8.4 We know that a private member of a base class is not inheritable. Is it anyway
possible for the objects of a derived class to access the private members of the base

class? If yes, how? Remember, the base class cannot be modified.
8.5 How do the properties of the following two derived classes differ?
la} class DI: private B(//...);
(b} elass D2: public B{//..};
8.6 When do we use the protected visibility specifier to a class member?
8.7 Describe the syntax of multiple inheritance. When do we use such an inheritance?
8.8 What are the implications of the following two definitions?
(a} class A: public B, public C{//...};
(b} class A: public C, public B{//....};
8.9 What is a virtual base class?
8.10 When do we make a class virtual?
8.11 What is an abstract class?
8.12 In what order are the class constructors called when a derived class object is
created?
8.13 Class D is derived from class B. The class D does not contain any data members
of its own. Does the class D require constructors? If yes, why?
8.14 What is containership? How does it differ from inheritance?
8.15 Describe how an object of a class that contains objects of other classes created?
B.16 Stafe whether the following statements are TRUE or FALSE:
ia) Inheritance helps in making a general class into a more specific class.
(b) Inheritance aids data hiding.

(e} One of the advantages of inheritance is that it provides a conceptual
framework.

(d) Inheritance facilitates the creation of class libraries.

(e) Defining a derived class requires some changes in the base class.

(f1 A base class is never used to create ohjects.

(g) It is legal to have an object of one class as a member of another class.

th) We can prevent the inheritance of all members of the base class by making
base class virtual in the definition of the derived class.

I?e'ﬁuggt;ig Exercises

8.1 Identify the error in the following program.

#finclude <iostream.h=

244 e Object-Oriented Programming with C++

class Student |
char® name;
int rollNumber;
private:
Student() {
name = "Alankay®;
rol1Number = 1025;
!
void setNumber(int no) |
rol 1Number = no;
!
int getRollNumber{) {
return rollNumber;
1
b

class AnualTest: Student |
int markl, markZ;
public:
AnualTest(int ml, int m2)
:markl(ml), markz(m2) {
|
int getRol1Number() |
return Student::getRol1Number();
1
B

void main()
{
AnualTest testl(92, 85);
cout =< testl.getRollNumber();
|
8.2 Identify the error in the following program.

#include =iostream.h>
class A
{
public:
A()
{

Copyrighted material

[nheritance: Extending Classes

cout << "A";

1
1
class B: public A
{
public:
B()
{
cout == "B%;
)
b
class C: public B
{
public
c{)
{
cout << "C";
1
¥
class D
{
public:
B()
{
cout =< "D%:
]
B
class E: public C, public D
{
public:
E()
{
cout << *D";
]
)4
class F: B, wvirtual E
{
public:
F()

®245

Copyrighted material

2468

8.3

8.4 Find errors in the following program. State reasons.

cout =< "F";

¥
void main()

(
F f;

Identify the error in the following program.

finclude <iostream.h>

class A
{
int 1;
H
class AB: wirtual A
i
int j;
B
class AC: A, ABAC
{
int k;

}i
class ABAC: AB, AC
{
int 13
1
yoid main()
{
ABAC abac;
cout << "sizeof ABAC:“ =< sizeof(abac);

|

/[Program test
fFinclude <iostream.h>

class X

Object-Onented Programming unth C++

Copyrighted material

{
private:
int xi;
protected:
int x2;
public:
int x3;
b
?1ass ¥: public X
public:
void ()
{
int yl,¥2,.v3;
¥l = x1;
¥y = x2;
¥y3 = x3;
¥
IH
class Z: X
{
publics
void f()
!
int z1,22,23;
zl = xl;
22 = N3
3 = 13z
}
maini}
{
int m,n,p;
LH
me= y,xl;
o= ¥.%23
po= ¥.ud;
Iz
m=z.xl;
n=z.x2;
p = Z.x3;
}

Inheritance: Extending Closses

Copyrighted material

248% Object-Oriented Programming with C++

8.5 Debug the following program. -

/[Test progrom
Finclude <=iostream.h=

class Bl

{
int bl;

public:
vold display();
{

}

cout =< bl =<"yn":
b3

class B2
!
int b2;
public:
void display():
{
cout =< bZ =<"\n";
)
IH
class D: public Bl, public B2

.
{
[nothing here
b
main{)
1
HI
d.display()
d.Bl::display();
d.B2::display();
i
Programming Exercises

8.1 Assume thof a bank maintoing fwo kinds of accounts for customers, one called as
savings account and the other as current account. The savings account prrmidg.q
compound interest and withdrawal facilities but no cheque book facility. The
current account provides chegue book facility but no interest. Current account
holders should also maintain a minimum balance and if the balance falls below
this level, a service charge is imposed.

Copyrighted material

Inheritance; Extending Classes & 249

Create a class account that stores customer name, account number and type of
account. From this derive the classes eur_acet and sav_acct to make them more
specific to their requirements. Include necessary member functions in order to
achieve the following tasks:

(a) Accept deposit from a customer and update the balance.

{(b) Display the balance.

(e} Compute and deposit interest.
(d) Permit withdrawal and update the balance.

(el Check for the minimum balance, impose penalty, necessary, and update the
balance.

Do not use any constructors, Use member functions to initialize the class members.

8.2 Modify the program of Exercise 8.1 to include constructors for all the three classes.

8.3 An educational institution wishes to maintain a database of its employees. The

dotabase iz divided into a number of classes whose hierarchical relationships are

shown in Fig. 8.14. The figure also shows the minimum information required for

each class. Specify all the classes and define functions to create the database and
retrieve individual information as and when required.

staff

code
name

—/’—’/

teachar | officer |
subject | : |
publication | tymst i grada I

spaed

regular casual

daily
wages

Fig. 814 <= Class relationships (for Exercise 8,19)

8.4 The database created in Exercise 8.3 does not include educational information of
the staff. It has been decided fo add this information to teachers and officers (and
not for typists) which will help the managemendt in decision making with regard
to training, promotion, etc. Add another data class called education that holds

Copyrighted material

8.5

5.6

BT

Object-Oriented Programming with C++

two preces of educational information, namely, highest gqualification in general
education and highest professional qualification. This class should be inherited
by the classes teacher and officer. Modify the program of Exercise 819 to
inearporale these additions.

Consider a class nefwork of Fig. 8.15. The closs master derives information from
both account and admin classes which in turn derive information from the class
person, Define all the four classes and write a program to create, update and
display the information contained in master objects.

person

FuATIES
coda

N

account admin

pay BxpaeTiance

e

Parson

name
code
axparience
ey

| .: inheritance (for Exercise 8.21) I

In Exercise 8.3, the classes teacher, officer, and typist are derived from the
class staff. As we know, we can use container classes in place of inherifance in
some situations. Redesign the program of Exercise 8.3 such that the classes
teacher, officer, and typist contain the objects of staff.

We have learned that OOP is well suited for designing simulation programs.
Lsing the technigues and tricks learned so far, design a program that would
simulate a simple real-world system familiar to vou.

Copyrighted material

Pointers, Virtual Functions
and Polymorphism

Key Concepts

Polymorphism
¥
Pointers
Pointers to objects
thig pointer
Pointers to derived classes

Virtual functions

¥YY ¥ ¥v¥YyV¥YYy

Pure svirtual function

9.1 Introduction

Polymorphism is one of the crucial features
of OOP. It simply means ‘one name,
multiple forms". We have already seen how
the concept of pelymorphism is
implemented using the overloaded
functions and operators. The overloaded
member functions are ‘selected’ for invoking
by matching arguments, both type and
number. This information is known to the
compiler at the compile time and, therefore,
compiler is able to select the appropriate
function for a particular call at the compile

- time itself. This is called early binding or

static binding or static linking. Also known

as compile time polymorphism, early binding simply means that an ohject iz bound to its

function call at compile time.

Now let us consider a situation where the function name and prototype is the same in
both the base and derived classes. For example, consider the following class definitions:

class A

{
int x:
publig:

252® Object-Oriented Programming with C++

void show() {....} J/ show(} In base closs
-
class B: public A
{
int y;
public:
void show() {....} [l show(}) in derived closs
|

How do we use the member function show() to print the values of ohjects of both the
classes A and B?. Since the prototype of show() is the same in both the places, the function
is not overloaded and therefore static binding does not apply. We have seen earlier that, in
such situations, we may use the class resolution operator to specify the class while invoking
the functions with the derived class ohjects. :

It would be nice if the appropriate member function could be selected while the program
is running. This is known as run time polymorphism. How could it happen? C++ supports a
mechanism known as virtual function to achieve run time polymorphism. Please refer
Fig. 9.1.

Polymorphism
."---.‘
__.-"' “"x,
~ -
i l— -
Compile time " Runtima 'ﬁ
' polymorphism . Polymomhism
™
"—\—|_,_.—-—""'-
- ‘H
- H“HH
O SN S 1
Funciion | ' Operator | Wirtual

overloading i | overloading | functions

Fig 9.1 = Achieving polymorphizm |

At run time, when it is known what class objects are under consideration, the appropriate
version of the function is invoked. Since the function is linked with a particular class much
later after the compilation, this process is termed as late binding. It is also known as dynamic
binding because the selection of the appropriate function is done dynamically at run time.

Dynamic binding is one of the powerful features of C++. This requires the use of pointers
to ohjects. We shall discuss in detail how the object pointers and virtual functions are used
to implement dynamic binding.

Pointers, Virtual Functions and Polymorphism # 253

9.2 Pointers

Pointers is one of the key aspects of C++ language similar to that of C. As we know, pointers
offer a unigue approach to handle data in C and C++. We have seen some of the applications
of pointers in Chapters 3 and 5. In this section, we shall discuss the rudiments of pointers
and the special usage of them in C++.

We know that a pointer is a derived data type that refers to another data variable by
storing the variable’s memory address rather than data. A pointer variable defines where to
get the value of a specific data variable instead of defining actual data.

Like C, a pointer variable can also refer to (or point to) another pointer in C++, However,
it often points to a data variable. Pointers provide an alternative approach to access other
data ohjects.

Declaring and Initializing Pointers

As discussed in Chapter 3, we can declare a pointer variable similar to other variables in
C++. Like C, the declaration is based on the data type of the variable it points to. The
declaration of a pointer variable takes the following form:

data-type *pointer-variable;

Here, pointer-variable is the name of the pointer, and the data-type refers to one of the
valid C++ data types, such as int, char, float, and so0 on. The data-type is followed by an
asterizk (*) symbol, which distinguishes a pointer variable from other variables to the
compiler.

rLoe

We can locate asterisk (*) immediately before the pointer variable, or between the data
type and the pointer variable, or immediately after the data type. It does not cause any
effect in the execution process.

As we know, a pointer variable can point to any type of data available in C++. However,
it is necessary to understand that a pointer is able to point to only one data type at the
specific time. Let us declare a pointer variable, which points to an integer variable, as follows:

int *ptr;

Here, ptr iz a pointer variable and points to an integer data type. The pointer variable,
ptr, should contain the memory location of any integer variable. In the same manner, we
can declare pointer variables for other data types also.

254 @ Object-Oriented Programming with C++

Like other programming languages, a variable must be initialized before using it in a
C++ program. We can initialize a pointer variable as follows:

int *ptr, a; // declaration
ptr=Ba; // initialization

The pointer variable, ptr, contains the address of the variable a. Like C, we use the
‘address of operator or reference operator i.e. ‘&’ to retrieve the address of a variable. The
second statement assigns the address of the variable a to the pointer ptr.

We can also declare a pointer variable to point to another pointer, similar to that of C,
That is, a pointer variable contains address of another pointer, Program 9.1 explains how to
refer to a pointer's address by using a pointer in a C++ program.

EXAMPLE OF USING POINTERS

Finclude <iostream.h=
Finclude =conio.h=

void main()

{

int a, *ptrl, **ptr?;

clrscr();

ptrl = fa;

ptre=Rptrl;

cout << "The address of a : ™ =< ptrl == "\n";
cout =< "The address of pirl :." =< piré;

cout =< "\n\n";

cout =< "After incrementing the address values:\n\n";

ptril+=2;

cout =<'""The address of '@’ " == ptrl € "\n";
ptri+=2;

cout << "The address of ptrl : " =< ptr2 << "\n";

)

PROGRAM 9.1

Copyrighted material

Pointers, Virtual Functions and Polymorphism # 255

The memory location is always addressed by the operating system. The output may vary
depends on the system. Output of Program 9.1 would look like:

The address of a : OxBfbGffT4
The address of ptrl: OxBfbefff2
After incrementing the address values:
The address of a : Ox8fbefffR
The address of a : DxBfbETTTE

We can also use void pointers, known as generic pointers, which refer to variables of any
data type. Before using void pointers, we must type cast the variables to the specific data
types that they point to. :

L E

The pointers, which are not initialized in a program, are called Null pointers. Pointers of
any data type can be assigned with one value i.e., 0° called null address.

Manipulation of Pointers

As diseussed earlier, we can manipulate a pointer with the indirection operator, Le. ',
which iz also known as dereference operator. With this operator, we can indirectly access
the data variable content. It takes the following general form:

| *pointer_variable |

As we know, dereferencing a pointer allows us to get the content of the memory location
that the pointer points to, After assigning address of the variable to a pointer, we may want
to change the content of the variable. Using the dereference operator, we can change the
contents of the memory location.

Let us consider an example that illustrates how to dereference a pointer variable. The
value associated with the memory address is divided by 2 using the dereference operator.
The division affects only the memory contents and not the memory address itself.
Program 9.2 illustrates the use of dereference operator in C++.

MANIPULATION OF POINTERS

finclude =iostream,h=
finclude =conio.h=

void main()
{Contd)

256® Object-Oriented Programming with C++

int a=1l}; “ptr;

ptr = &a;

clrscr();

cout << "The value of a is : " =< a:

cout <<= "\n\n";

*ptr=(*ptr)/2:

cout << "The value of a is ¢ N << {*ptr);
cout =< "Ynyn";

;

PROGRAM 9.2

Output of Program 9.2:

The value of a is : 10

The value of a is = §

CaLliorn

Before dereferencing a pointer, it is essential to assign a value to the peinter. If we attempt
to dereference an uninitialized pointer, it will cause runtime error by referring to any
other location in memory.

Pointer Expressions and Pointer Arithmetic

As discussed in Chapter 3, there are a substantial number of arithmetic operations that can
be performed with pointers. C++ allows pointers to perform the following arithmetic
operations:

® A pointer can be incremented (++) (or) decremented (— -)
® Any integer can be added to or subtracted from a pointer
#® Omne pointer can be subtracted from another

Example:

int a[6];
int *aptr;
aptr=Ra[0];

Obwviously, the pointer variable, aptre, refers to the base addreas of the variable a. We can
increment the pointer variable, shown as follows:

Copyrighted material

aptres for) +eaptr
ThmMuthmhﬂmmmm we can decrement
the pointer variable, as follows:
aptr—— {or) ——aptr

reen nﬂaﬁwﬂhmxfmpdﬁm-.
statement ﬁmhﬂmmm
*mﬂmﬁn the same array can be subtracted from each other.

cannot perform pointer arithmetic on variables which are not stored in contiguous
b locations. Program 9.3 M&mmmnmm
memory
with pointers,

Copyrighted material

cout<<"\nYalue of ptr+?
cout =< "\n";
ptr=ptr-1;

cout =<"\n¥alue of ptr-I:

cout =< "\n";

ptr+=3;

cout<=<"\n¥alue of ptre=3:

ptr-=2:
cout << "\n";

cout<<"\n¥alue of ptr-=2:

cout <= " Y\n":

getch();
i
Crutput of Program 9.3:
The array values are:
56
75
22
18
ag
Value of ptr : 56
¥alue of ptr++ @ 75
Value of ptr== : B&b
Value of ptr+2 1 22
Value of ptr-1 : 75
Value of ptr+=3 : G0
Value of ptr-=2 : 22

Using Pointers with Arrays and Strings

Object-Oriented Programming with Ces

R 1

PROGRAM 9.3

Pointer is one of the efficient tools to access elements of an array. Pointers are useful to
allocate arrays dynamically, i.e. we can decide the array size at run time. To achieve this,
we use the functions, namely malloe() and calloe(), which we already discussed in
Chapter 3. Accessing an array with peointers is simpler than accessing the array index.

In general, there are =ome differences between pointers and arrays; arrays refer to a
block of memory space, whereas pointers do not refer to any section of memory. The memory
addresses of arrays eannot be changed, whereas the content of the pointer variables, such

as the memory addresses that it refer to, can be changed.

Copyrighted material

Pointers, Virtual Functions and Polymorphism #259

Even though there are subtle differences between pointers and arrays, they have a strong
relationship between them.

fode

There iz no error checking of array bounds in C++. Suppose we declare an array of size
25. The compiler issues no warnings if we attempt to access 26th location. It is the
programmer’s task to check the array limits,

We can declare the pointers to arrays as follows:

int *nptr;
nptr=number[0];

nptr=number;

Here, nptr points to the first element of the integer array, number[0]. Also, consider the
following example:

float *fptr;
fptr=price[0];
Or

fptr=price;

Here, fptr points to the first element of the array of float, price(0]. Let us consider an
example of using pointers to access an array of numbers and sum up the even numbers of
the array. Initially, we accept the count as an input to know the number of inputs from the
user. We use pointer variable, ptr to access each element of the array. The inputs are checked
to identify the even numbers. Then the even numbers are added, and stored in the variable,
sum. If there is no even number in the array, the output will be 0. Program 9.4 illustrates

how to access the array contents using pointers.

POINTERS WITH ARRAYS

#include <jostream.h>

verid main)

{
int numbers{50], *ptr;
ntim;i;
cout =< "\nEnter the countin";
cin == n;

{Contd)

260 @ Dbject-Oriented Programming with C++

cout == "\nEnter the numbers one by onekn";

far{i=0zi<ns1++)

£in »= numbersiil;

/* Assigning the base address of numbers to ptr and ipitializing
the sum to O0*/

ptr = numbers;

int sum=0;

/* Check out for even inputs and sum up them*/
for{i=0gicnji++)

if (*ptri2==0) e
 sumsSumeeptry
ptire+;

}

cout =< "\n\nSum of even numbers: * << sum;

!
Cutput of Program 5.4:

PROGRAM 9.4

Enter the count

2

Enter the numbers one by one
10

16

23

45

34

Sum of even numbers: &0

Arrays of Pointers

Similar to other variables, we can create an array of pointers in C++. The array of pointers
represents a collection of addresses. By declaring array of pointers, we can save a substantial
amount of memory space.

An array of pointers point to an array of data items. Each element of the pointer array
points to an item of the data array. Data items can be accessed either directly or by
dereferencing the elements of pointer array. We can reorganize the pointer elements without
affecting the data items.

Copyrighted material

Pointers, Virtual Functions and Polymorphism ® 261
We can declare an array of pointers as follows:
int *inarray[10];

This statement declares an array of 10 pointers, each of which points to an integer. The
address of the first pointer is inarray|(0], and the second pointer is inarray(1], and the final
pointer points to inarray[9)]. Before initializing, they point to some unknown values in the
memory space. We can use the pointer variable to refer to some specific values. Program 8.5

explains the implementation of array of pointers.

(Contd)

Copyrighted material

262@ Object-Oriented Programming with C++

|

if{i==4)
cout =< "\m\nYour favorite " =< " not available here" << endl;
getch(};
!
PROGRAM 9.5
Crutput of Program %.5H:

Enter your favorite leisure pursuit: books

Your favorite pursuit is available here

Pointers and Strings

We have seen the usage of pointers with one dimensional array elements. However, pointers
are also efficient to access two dimensional and multi-dimensional arrays in C++. Thereis a
definite relationship between arrays and pointers. C++ also allows us to handle the special
kind of arrays, i.e. strings with pointers.

We know that a string i= one dimensional array of characters, which start with the index
0 and ends with the null character “\0" in C++. A pointer variable can access a string by
referring to its first character. As we know, there are two ways to assign a value to a string.
We can use the character array or variable of type char *. Let us consider the following
string declarations:
char num{]="one";

const char *numptr= "one";

The first declaration ereates an array of four characters, which contains the characters,
‘o0’ e’ A\, whereas the second declaration generates a pointer variable, which points to
the first character, i.e. ‘o’ of the string. There is numerous string handlirg functions available
in C++. All of these functions are available in the header file <estring.

Program 9.6 shows how to reverse a string using pointers and arrays.

ACCESSING STRINGS USING POINTERS AND ARRAYS

#include <iostream.h>
#include =<string.h=

void main()

(Contd)

Copyrighted material

Pointers, Virtual Functions and Polymorphism #263

char strf] = "Test";

int len .= strien(str);

for{int i=0; i<len; i++)

{
cout =< str[f] << 1[str] <= *{str+i) << *{{+str);

}

cout == endl;

J//5tring reverse

int lenM = len / 2;

len——;

for(f=0; i<lenM; 14+)

1
strfi] = strli] + strllen-i);
strilen~i] = str[i] - str[len-i];
strfi] = str[i] - strlen-1];

|

cout << " The string reversed : * << 8tr;

PROGRAM 9.6

Qutput of Program 9.6:

TTTTeeeasssstitt
The string reversed : tsel

Pointers to Functions

Even though pointers to functions (or function pointers) are introduced in C, they are widely
used in C++ for dynamie binding, and event-based applications. The concept of pointer to
function acts as a base for pointers to members, which we have discussed in Chapter 5.

The pointer to function is known as callback function. We can use these function pointers
to refer to a function. Using function pointers, we can allow a C++ program to select a
function dynamically at run time. We can also pass a function as an argument to another
function. Here, the function is passed as a pointer. The function pointers cannot be
dereferenced. C++ also allows us to compare two function pointers.

C++ provides two types of function pointers; function pointers that point to static member
functions and function pointers that point to non-static member functions. These two function
pointers are incompatible with each other. The funetion pointers that point to the non-static
member function requires hidden argument.

264 e Object-Oriented Programming with C++

Like other variables, we can declare a function pointer in C++. It takes the following form:

data_type(*function_name)(); 1

As we know, the data_tyvpe is any valid data types used in C++. The function_name is the
name of a function, which must be preceded by an asterisk (*). The function_name is any
valid name of the function.

Example:
int (*num function(int x));:

Remember that declaring a pointer only creates a pointer. It does not create actual function.
For this, we must define the task, which is to be performed by the function. The function
must have the same return type and arguments. Program 9.7 explains how to declare and
define function pointers in C++.

POINTERS TO FUMCTIONS

finciyde <iostream.h>
typedef void (*FunPtr){int, int);
vaid Add{int i, int j)

Egutﬁcﬁtd“a"etjcc'-r"-\:-\:'iaJ';

void Sobtract(int i, int j)

cout =5 | = e Mg jowx P2 F s i .

woid main{)

FunPtr ptr;

ptr = EAdd;
ptril,2);

cout << endl;
ptr =-ASubtract;
ptr(3.2);

PROGRAM 9.7

Copyrighted maierial

Pointers, Virtual Funetions and Polymorphism 9 265

Output of Program 9.7:

| 1+2=3
j=-2m=1

i |9+3 Pointers to Objects

We have already seen how to use pointers to access the class members. As stated earlier, a
pointer can point to an object created by a class. Consider the following statement:

item x;

where item is a class and x is an ohject defined to be of type item. Similarly we can define a
pointer it_ptr of tyvpe item as follows:

item *it_ptr;

Object pointers are useful in creating objects at run time. We can also use an object
pointer to access the public members of an object. Consider a class item defined as follows:

class item
{
int code;
float price;
public:

void getdata(int a, float b)
{

code = a;

price = b;

vold show(void)
{
cout =< "Code : " =< code =< "\n";
<< "Price; " =< price =< "\n\n";
}
|
Let us declare an item variable x and a pointer ptr to x as follows:

item x;
item *ptr = &x;

Copyrighted material

266® Object-Oriented Programming with C++

The pointer ptr is initialized with the address of x.

We can refer to the member functions of item in two ways, one by using the dot operator
and the object, and another by using the arrow operator and the object pointer. The statements

x.getdata(100,75.50) ;
x.show();

are equivalent to
ptr->getdata(100, 75.50);
ptr->show();
Since *pitr is an alias of x, we can also use the following method:
(*ptr).show();

The parentheses are necessary because the dot operator has higher precedence than the
indirection operator ¥,

We can also create the objects using pointers and new operator as follows:
item *ptr = new item;
This statement allocates enough memory for the data members in the object structure
and assigns the address of the memory space to ptr. Then ptr can be used to refer to the
members as shown below:

ptr == show();

If a clas= has a constructor with arguments and does not include an empty constructor,
then we must supply the arguments when the ohject is created.

We can also create an array of objects using pointers. For example, the statement
item *ptr = new item[10]; Jf array of 10 objects

creates memory space for an array of 10 objects of item. Remember, in such cases, if the
class contains constructors, it must also contain an empty constructor.

Program 9.8 illustrates the use of pointers to objects.

Copyrighted material

Copyrighted material

2688 ~ Object-Oriented Programming with C++

d->show();
d#+;

!

return 0;

PROGRAM 9.8

The output of Program 9.8 will be:

Input code and price for iteml 40 500
Input code and price for itemZ 50 600
Item:1

Code : 40

Price: 500

[tem:2

Code : 50

Price: B00

In Program 9.8 we created space dynamically for two objects of equal size. But this may
not be the case always. For example, the ohjects of a class that contain character strings
would not be of the same size. In such cases, we can define an array of pointers to ohjects
that can be used to access the individual objects. This iz illustrated in Program 9.9,

ARRAY OF POINTERS TO OBJECTS

¥include <iostream>
Finclude <cstrimg=

using namespace std;

class city
{
protected:
char *name;
int len:
public:
city()

{
len = 0;
name = new char[len+l]:
(Contd)

Copyrighted material

Pointers, Virtual Functions and Polymorphism 9269

}
void getname(void)
[
char *s;
5 = pnew char[30];

cout << "Enter city name:";
cin == 5

len = strlen(s); .
name = new char[len + 1];
strcpy(name, s);

I
void printname(void) .
[b
cout << name << "\n"; .
1
|F
int main()
city *eptr[10]; I array af 10 pu[ﬁ:erﬁ to cities
int.m = 1:
int option;
do
{
cptrln] = new city; [/ create new city
cptr[n] ->getname() ;
n-+ ! &
cout << "Do you want to anfer one more: name?tn':
cout << "(Enter 1 for yes 0 for no):"
cin == option;
)
while(option);
cout << "\n\n";
for(int i=1; f==ng $H4):0 0o T
{ b T i i] _,'.---'-I:h:':;-
cptr[i]-=printname(); s
I
. return 0;
} : :

Copyrighted material

270 ® Object-Oriented Programming twith Ce+

The output of Program 9.9 would be:

Enter city name:Hyderabad

Do you want to enter one more name?
(Enter 1 for yes 0 for no);l

Enter city name:Secunderabad

Do you want to enter one more name?
(Enter 1 for yes 0 for no):l

Enter city name:Malkajgiri

Do you want to enter one more name?
(Enter 1 for yes 0 for no);0

Hyderabad
Secunderabad
Malkajgiri

|9.4 this Pointer

C++ uses a unique keyword called this to represent an object that invokes a member function.
this is a pointer that points to the object for which this function was called. For example,
the function call A.max() will set the pointer this to the address of the object A. The starting
address is the same as the address of the first variable in the class structure.

This unigque pointer is automatically passed to a member function when it is called. The
pointer this acts as an implicit argument to all the member functions, Consider the following
simple example:

class ABC
{

int a;

FPw o ow

b
The private variable ‘a’ can be used directly inside a member function, like
a = 123;
We can also use the following statement to do the same job:
this->a = 1233
Since C++ permits the use of shorthand form a = 123, we have not been using the pointer

this explicitly so far. However, we have been implicitly using the pointer this when
overloading the operators using member function.

Pointers, Virfual Functions and Polymorphism #2271

Recall that, when a binary operator is overloaded using a member function, we pass only
one argument to the function, The other argument is implicitly passed using the pointer
this. One important application of the pointer this is to return the ohject it points to. For
example, the statement

return *this;
inside a member function will return the object that invoked the function. This statement
assumes importance when we want to compare two or more objects inside a member function
and return the invoking object as a result. Example:

person & person :: greater(person & x)

{
if x.age > age
return x; /! orgument object
else
return *this; [/ invoking object
;

Suppose we invoke this function by the call
max = A.greater(B);

The function will return the object B (argument object) if the age of the person B is
greater than that of A, otherwise, it will return the object A {invoking object) using the
pointer this. Remember, the dereference operator * produces the contents at the address
contained in the pointer. A complete program to illustrate the use of this is given.in

Program 9.10.

this POINTER

Finclude =iostream=
#include <cstring=

using namespace std;

class person
1
char name[20];
float age;
public:
person(char *s, float a)

{
(Contd)

The output of Program 9.10 would be:

Elder person is:
Name: Hebber
Age: 40.25
Elder persom is:
Mame: John

Age: 37.5

Pointers, Virtual Functions and Polymorphism 2273

l9.5 Pointers to Derived Classes

We can use pointers not only to the base objects but also to the objects of derived classes.
Pointers to objects of a base class are type-compatible with pointers to abjects of a derived
class. Therefore. a single printer variahle ran e made to prant o nhjects helanging tn different
classes. For example, if B is a base class and D is a derived class from B, then a pointer
declared as a pointer to B can also be a pointer to D). Consider the following declarations:

B *cptr; /! pointer to closs B type varioble
B b; [/ bose object

b d; /[derived object

cptr = &b; /{ cptr points to object b

We can make eptr to point to the object d as follows:
cptr = &d; // cptr points to object d
This is perfectly valid with C++ because d is an object derived from the class B.
However, there i2 a problem in using eptr to access the public members of the derived
class D. Using eptr, we can access only those members which are inherited from B and not
the members that originally belong to D. In case a member of D has the same name as one

of the members of B, then any reference to that member by eptr will always access the base
class member.

Although C++ permits a base pointer to point to any object derived from that base, the
pointer cannot be directly used to access all the members of the derived class. We may have
to use another pointer declared as pointer to the derived type.

Program 9.11 illustrates how pointers to a derived object are used.

#include =iostream-

using namespace std;

class BC
{
public:
int b;
void show()

* cout =< "h = " < p =< "".In";:.
HE
(Conid)

274 e Object-Oriented Programming iwith C++

class DC : public BC

{
public:
int d;
void show()
[cout << "b = * << b << *\n"
== "d = " =2 g =« "\n®:
i
bs
int main()
{
BC *bptr; // base pointer
BC base;
bptr = &base; /[base address
bptr->b = 100; /[occess BC vio bose pointer

cout =< "bptr points to base object \n";
bptr -> show();
J/ derived class

DL derived;
bptr = Ederived; // oddress of derived object
bptr -= b = 200; [/ occess DC via base polnter

J* bptr -> d = 300;%/ // won't work

cout <= "bptr now points to derived object \n";

bptr -= show(); /! bptr now points to derived object
/* accessing d using a pointer of type derived class DC */

DC *dptr; /[derived type pointer
dptr = Aderived;
dptr->d = 300;

cout =< ‘dptl‘ is derived type Fﬂ'll"lt-El"I'I.“Ii
dptr == show():

cout << "using ((DC *)bptr)\n";
((DC *)bptr) -> d = 400;
((DC *)bptr) -> show();

return 03

PROGRAM 9.11

Pointers, Virtual Funetions and Polymorphism 275

Program 9.11 produces the following output:

bptr points base aobject

b = 100

bptr now points to derived object
b = 200

dptr is derived type pointer

b = 200

d = 300

using {{OC *)}bptr)

b = Z00

d = 400

— e
We have used the statement

bptr == show();

two times. First, when bptr points to the base object, and second when bptr i= made to
point to the derived object. But, both the times, it executed BCushow() function and
digplayed the content of the base object. However, the statements

dptr -= show();
((DC *) bptr) == show(); /[cast bptr to DC type

display the contents of the derived ohject. This shows that, although a base pointer can
be made to point to any number of derived objects, it cannot directly access the members
Qieﬁnad by a derived class. .)

IELﬁ Virtual Functions

Az mentioned earlier, polymorphism refers to the property by which objects belonging to
different classes are able to respond to the same message, but in different forms. An essential
requirement of polymorphism is therefore the ability to refer to objects without any regard
to their classes. This necessitates the use of a single pointer variable to refer to the ohjects
of different classes. Hore, we use the pointer to base class to refer to all the derived objects.
But, we just discovered that a base pointer, even when it is made to contain the address of
a derived clazs, always executes the function in the base class. The compiler eimply ignores
the contents of the pointer and chooses the member function that matches the type of the
pointer. How do we then achieve polymorphism?. It is achieved using what is known as
“virtual’ functions.

Copyrighted material

276%

When we use the same function name in both the base and derived classes, the function
in base class is declared as virtual using the keyword virtual preceding its normal
declaration. When a funetion is made virtual, C++ determines which function to use at run
time based on the type of object pointed to by the base pointer, rather than the type of the
pointer. Thus, by making the hase pointer to point to different nbjects, we can execute

Ohject-Oriented Programming wath C++

different versions of the virtual fonction. Program 9,12 illustrates this point.

VIRTUAL FUNCTIONS

fFinclude =<jostream=

using namespace std;

class Base
{
public:
void display() {cout =< "\n Display base ";}
yirtual void show() {cout =< “\n show base®;}
I
class Derived : public Base
{
public:

I
I

void display() (cout << "\n Display derived";}

void show() {cout == "\n show derived"s)

int main()

{

Base B;
Derived D:
Base *bptr;

cout << *\n bptr points: to Base \n";

bptr = &B;
bptr -= display(); // calls Base version
bptr == show(): J[calls Base version

cout =< "\n\n bptr points to Derived\n";

bptr = &D;

bptr -= display(): . f/ calls Base version
bptr -> show(): /i calls Derived version
return 0;

PROGRAM 9.12

Pointers, Virtual Functions and Polymorphism 277

The output of Program 9.12 would be:
bptr points to Base

Display base
Show base

bptr points to Derived

Display base
Show derived

rnote

Fl"
When bptr is made to point to the object I, the statement

bptr -> display();

calls only the function associated with the Base (i.e. Base = display()}, whereas the
statement

bptr -= show();

calls the Derived version of show(). This is because the function display() has not
I'.'len-ua-lan. made virtual in the Base class. y

One important point to remember is that, we must access virtual functions through the
use of a pointer declared as a pointer to the base class. Why can't we use the object name
(with the dot operator) the same way as any other member function to call the virtual
functions?. We can, but remember, run time pelymorphism is achieved only when a virtual
function is accessed through a pointer to the base class.

Let us take an example where

virtual functions are imple- AT
mented in practice. Consider a T s
book shop which sells both books
and video-tapes. We can create a 2
class known as media that stores
the title and price of a publication. hook
We can then create two derived
classes, one for storing the num-
ber of pages in a book and another Fig. 92 <« The class hierarchy for the book shop '
for storing the playing time of a

tape. Figure 9.2 shows the class

hierarchy for the book shop.

tape

278® Object-Oriented Programming with C++

The classes are implemented in Program 9.13. A function displayi() iz used in all the
classes to display the class contents. Notice that the function display() has been declared
virtual in media, the base class.

In the main program we create a heterogeneous list of pointers of type media as shown
below:

media *1ist[2] = { &bookl, Atapel};

The base pointers list[0] and list[1] are initialized with the addresses of objects bookl
and tapel respectively.

RUNTIME POLYMORPHISH

fFinclude <iostream
#include <cstring>

using namespace std;

class media
{
protected:
char title[50]:
float price;
public:
media(char *s, float a)
{
strepy(title, s);
price = a;
)
virtual void display() { } // empty virtual function
I

class book: public media
{
int pages;
public: "
book (char *s, float a, int p):media(s,a)

|

i
vold displayl);

pages = p;

(Contd)

Copyrighted material

Pointers, Virtual Functions and Polymorphism

class tape :public media

{
float time;
public:
tape(char * s, float a, float t):media(s, a)

3

|
void display();

time = t;

void book :: display()

{
cout << "\n Title: " =< title;
cout << "\n Pages: " << pages;
cout << "\n Price: " << price;
}

vold tape :: display()

{
cout =< "\n Title: " =< title;
cout =< "\n play time: " << time << "mins";
cout << "\n price: " << price;

}

int main()

{
char * title = new char[30];
float price, time;
int pages;

// Book details

cout << "\n ENTER BOOK DETAILS\n";
cout =< " Title:"; cin == title;
cout =< " Price: "; cin »> price;
cout =< " Pages: "; cin >> pages;

book bookl(title, price, pages);

[/ Tape details

cout =< "\n ENTER TAPE DETAILS\n";

cout << " Title: "; cin>> title;

cout =< " Price: "; cin »> price;

cout << " Play time (mins): =; cin »> time;

€279

(Contd}

280e— Object-Oriented Programming with C++

tape tapel(title, price, time);
media* 1ist[Z2];

1ist[0] = Abookl:

1ist{1] = Atapel;

cout << "\n MEDIA DETAILS®;

cout << "\n [..... BOOK. ny
1ist[0] -> display();// display book details

cout << "W ... TRPE...... =1
1ist[1] == display(); // display tape details

result 0:

PROGRAM 9.13

The output of Program 9.13 would be:

ENTER BOOK DETAILS
Title:Programming in ANSI C
Price: 88

Pages: 400

ENTER TAPE DETAILS

Title: Computing Concepts
Price: 90

Play time (mins): 55

MEDIA DETAILS
r+11--Em“i-|I-|-l-+
Title:Programming in ANSI C
Pages: 400

Price: 88

sesasTAPE......

Title: Computing Concepts
Play time: 55mins

Price: 90

Rules for Virtual Functions

When virtual functions are created for implementing late binding, we should observe some
basic rules that satisfy the compiler requirements:

Pointers, Virtual Functions and Polymorphism #281

The wirtual functions must be members of some class.
They cannot be static members.

They are accessed by using object pointers.

A virtual function can be a friend of another class.

A virtual function in a base class must be defined, even though it may not be
used.

6. The prototypes of the base class version of a virtual function and all the derived
clags versions must be identical. If two functions with the same name have differ-
ent prototypes, C++ congiders them as overloaded functions, and the virtual fune-
t'on mechanism is ignored.

7. We cannot have virtual constructors, but we can have virtual destructors.

8. While a base pointer can point to any type of the derived object, the reverse is not
true. That is to say, we cannot use a pointer to a derived class to access an object of
the base type.

9. When a base pointer points to a derived class, incrementing or decrementing it will
not make it to point to the next object of the derived class. It iz incremented or
decremented only relative to its base type. Therefore, we should not use this method
to move the pointer to the next object.

10. [If avirtual function is defined in the base class, it need not be necessarily redefined
in the derived class. In such cases, calls will invoke the base function.

IEI.? Pure Virtual Functions

It is normal practice to declare a funetion virtual inside the base class and redefine it in the
derived classes. The funetion inside the base elass is seldom used for performing any task. It
only serves as a placeholder. For example, we have not defined any object of class media and
therefore the function display() in the base class has been defined 'empty’. Such functions
are called "do-nothing” functions.

oo o e

A “do-nothing” function may be defined as follows:
virtual void display() = 0;

Such functions are called pure virfual fonctions. A pure virtual function is a function
declared in a base class that has no definition relative to the base class. In such cases, the
compiler requires each derived class to either define the function or redeclare it as a pure
virtual function. Remember that a class containing pure virtual functions cannot be used to
declare any objects of its own. As stated earlier, such classes are called abstract base classes.
The main ohjective of an abstract base class is to provide some traits to the derived classes
and to create a base pointer required for achieving run time polymorphism.

282 Object-Oriented Programming with C++

MMARY
L SUMMA 3
— L
% Polymorphism simply means one name having multiple forms.
¢ There are two types of polymorphism, namely, compile time polymorphism and run

¢t ¢

time polymorphizm.

Functions and operators overloading are examples of compile time polymorphism. The
overloaded member functions are selected for invoking by matching arguments, both
type and number. The compiler knows this information at the compile time and,
therefore, compiler is able to select the appropriate funection for a particular call at the
compile time itself. This is called early or static binding or static linking. It means that
an object is bound to its function call at compile time.

In run time polymorphism, an appropriate member function is selected while the program
is running. C++ supports run time polymorphism with the help of virtual functions. It
is called late or dynamic binding because the appropriate function is selected dynamically
at run time. Dynamic binding requires use of pointers to objects and is one of the
powerful features of C++.

Object pointers are useful in creating objects at run time. It can be used to access the
public members of an object, along with an arrow operator.

A this pointer refers to an object that eurrently invokes a member function. For example,
the function call a.show() will set the pointer 'this' to the address of the object 'a’.
Pointers to objects of a base class type are compatible with pointers to objects of a
derived class. Therefore, we can use a single pointer variable to point to objects of base
class as well as derived classes.

When a function is made virtual, C++ determines which function to use at run time
based on the type of object pointed to by the base pointer, rather than the type of the
pointer. By making the base pointer to point to different objects, we can execute different
versiong of the virtual function.

Run time polymorphism is achieved only when a virtual function is accessed through
a pointer to the base class. It cannot be achieved using object name along with the dot
operator to access virtual fanction.

We can have virtual destructors but not virtual constructors.

If a virtual function is defined in the base class, it need not be necessarily redefined in
the derived class. In such cases, the respective calls will invoke the base class function.

& A virtual function, equated to zero is called a pure virtual function. It i= a function

declared in a base class that has no definition relative to the base class. A class containing
such pure function is called an abstract class.

Pointers, Virtual Functions and Polymorphism

Key Terms

Abstract base classes
‘address of operator
argument object
arravs of pointers
arrow operator

base address

base object

bage pointer

call back function
class hierarchy
compile time
compile time polymorphism
dereference operator
Derived object
do-nothing function
dot operator
dynamic binding
early binding
function overloading
function pointer
Implicit argument
indirection operator

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YYYYYY

Review Questions

Y Y Y Y Y Y Y YY Y Y YYYYYYYYYY

invoking object

late binding

new operator

Null pointers

object pointer
operator overloading
placeholder

pointers

pointer arithmetic
pointers to functions
polymorphism

pure virtual function
run time

run time polymorphism
static binding

static linking

this pointer

virtual constructors
virtual destructors
virtual function

void pointers

9.1 What does polymorphism mean in C++ language?
9.2 How is polymorphism achieved af (a) compile time, and (b} run time?
9.3 Discuss the different ways by which we can access public member functions of an

ohject.

9.4 Ezplain, with an example, how you would create space for an array of objects

using pointers.

9.5 What does this pointer point tof

Copyrighted material

e ——

284e

9.6
9.7
9.8
9.9

Object-Oriented Programming with C++

What are the applications of this pointer?

What is a virtual function?

Why do we need virtual functions?

When do we make a virtual function "pure”? What are the implications of making
a function a pure virtual function?

9.10 State which of the following statements are TRUE or FALSE.

(a)
(b)

(e)
(d)
ie)

(f)

(g)

Virtual functions are used to creale pointers lo base classes.

Virtual functions allow us to use the same function call to invoke member
functions of objects of different classes.

A pointer to a base class cannot be made to point to objects of derived class.
this pointer points to the object that is currently used o inveke a function.

this pointer can be used lihe any other pointer fo access the members of the
ohject if points to.

this pointer can be made to point to any object by assigning the address of
the object.

Pure virtual functions force the programmer to redefine the virtual function
inside the derived classes.

I.Deb:qgging Exercises

Identify the error in the following program.

#ginclude <iostream.h=
class Info

2.1

{

char *name;
int number;

public:

H

void getInfo()
{

cout << "Info::getInfo “;
getName();
}

void getName()
{

cout << "Info::getName *;

}

Pointers, Vintual Functions and Polymorphism

9.2

class Name: public Info

{
char ®*name;
public:
void getName()
{

cout << “"Name::getName “;

void main()
{
Info *p;
Name n;
P =N
p=>getInfo():
)
I||'ﬂ-
Identify the error in the following program.
#include <iostream.h>
class Person
{
int age;
public:
Person()
{
i
Person(int age)
J

this.age = age;

I
Personk operator < (Person &p)
{
return age < p.age 7 p: *this;
}
int getAge()
{

return age;

285

Copyrighted material

9.3

Ohject-Orfented Programming wsith O+

Void main ()
{
Person P1 (15);
Person P2 (11);
Person P3;
JAf pl is Tess than p2
pd = pl = p2; pl. lessthan(pZ)
cout << p3.gethge();
1
lllll'
Identify the error in the following program.

#include *iostream.h"

class Human
i

public:

Human()

[

I

virtual -Human()

{

cout << "Human::~Human";

1

b

class Student: public Human
{
public:

Student()

{

|

~5tudent ()

{

cout =< "Student::-Student()”:

Copyrighted material

Pointers, Virtual Functions and Polymorphism @287

i
void main()
i
Human *H = new Student();
delete H;
!
9.4 Correct the errors in the following program.
class test
{
private:
int mg
public:
void getdata()
{
cout <<"Enter number:";
cin == m;
}
void display()
{
cout << m;
)
¥
main()
{
test T;

T->getdata();
T-=display();

test *p;

P = new test;
p.getdata();:
{(*p) .display();

9.5 Debug and run the following program. What will be the output?

f#include <iostream.h>
class A

{
protected:

288 Object-Onented Programming with C++

int a,b;
public:z
Afint x = 0, int y)
{
ams x;
b = y;
}
virtual void print();
}i
class B: public A
{
private:
float p.q;
public:
B(int m, int n, float u, float v)
{
po=u
q=v
)
B() {p = q = 0;}
void input(float u, float v);
virtual void print(float);
):
void A::print(void)
{
cout << A values: << g <<""<< b <<"\pn":
I

void B::print(float)
(
cout =<B values:<< u <<""<< y <<"\n";

vold B::input(float x, float y)
{

P = i

q=x:

main()

{
A al(10,20), *ptr;
B bl: .
bl.input(7.5,3.142);

ptr = Ral;
ptr-=print();

ptr = Ebl;
ptr=>print():

Copyrighted maierial

Pointers, Virtual Functions and Polymorphism # 289

I Programming Exercises

8.1 Create a base class called shape. Use this class to store two double type values
that could be used to compute the area of figures. Derive two specific classes called
triangle and rectangle from the base shape. Add to the base class, a member

function gel_datal) to initialize base class data members and another member
function display_areaf() to compute and display the area of figures. Make
display_area() as a virtual function and redefine this function in the derived
classes fo suif their requirements.
Using these three classes, design a program that will accept dimensions of a triangle
or a rectangle interactively, and display the area.
Remember the two values given as input will be treated as lengths of two sides in
the case of rectangles, and as base and height in the case of triangles, and used as
follows:

Area of rectangle = x * ¥

Area of triangle = 1/2 * x * y

9.2 Extend the above program to display the area of circles. This requires addition of
a new derived class ‘circle' that computes the area of a circle. Remember, for a
circle we need only one value, its radius, but the get_datal) function in the base
class requires two values to be passed. (Hint: Make the second argument of
get_datal) function as a defaulf one with zero value.)

9.3 Run the above program with the following modifications:
(a) Remove the definition of display_area() from one of the derived classes.

(b) In addition to the above change, declare the display_area() as virtual in
the base cless shape.

Comment on the output in each case,

Copyrighted material

Managing Console
I/O Operations

Key Concepts

Streamas

Stream classes

Linformatted output
Character-oriented i:1;|:rul:a"1::utput
Line-oriented inputfoutpit
Formatted output

Formatting functions
Formatting flags

Manipulators

¥ Y ¥ ¥ ¥ Y VY YV¥Y

User-defined manipulators

I 10.1 Introduction

Every program takes some data as input
and generates processed data as output
following the familiar input-process-output
eycle. It is, therefore, essential to know how
to provide the input data and how to
present the results in a desired form. We
have, in the earlier chapters, used cin and
cout with the operators >> and << for the
input and output operations. But we have
not so far discussed as to how to control
the way the output is printed. C++ supports
a rich set of /0 functions and operations
to do this. Since these functions use the
advanced features of C++ (such as classes,
derived classes and virtual functions), we
need to know a lot about them before really
implementing the C++ /0 operations,

Remember, C++ supports all of C's rich set of I'O functions. We can use any of them in the
C++ programs. But we restrained from using them due to two reasons. First, V'O methods in
C++ support the concepts of OOP and secondly, I/0 methods in C cannot handle the user-

defined data types such as class ohjects.

Managing Consele I/ 0 Operations ®291

C++ uses the concept of stream and stream classes to implement its IO operations with
the console and disk files. We will discuss in this chapter, how stream classes support the
console- oriented input-output operations. File-oriented 'O operations will be discussed in
the next chapter. i

Ilu.z C+ + Streams

The IfO gystem in C++ is designed to work with a wide variety of devices including terminals,
disks, and tape drives. Although each device is very different, the /O system supplies an
interface to the programmer that is independent of the actual device being accessed. This
interface is known as stream.

A stream is a sequence of bytes. It acts either as a source from which the input data can
be obtained or as a destination to which the output data can be sent. The source stream that
provides data to the program is called the input stream and the destination stream that
receives output from the program is called the output stream. In other words, a program
extracts the bytes from an input stream and inserts bytes into an output stream as illustrated
in Fig. 10.1.

Inpart straam
Input l ___ exiraction
devica 1 | from input
| stream
Program
Oulput stream ::::"ﬁ“"
Dutput _. slream
device

Fig. 10.1 <= Data sfreams

The data in the input stream can come from the keyboard or any other storage device.
Similarly, the data in the output stream can go to the screen or any other storage device. As
mentioned earlier, a stream acts as an interface between the program and the inputfoutput
device. Therefore, a C++ program handles data (input or output) independent of the devices
used.

C++ contains several pre-defined streams that are automatically opened when a program
begins its execution. These include cin and cout which have been used very often in our
earlier programs. We know that cin represents the input stream connected to the standard
input device (usually the keyboard) and cout represents the output stream connected to the
standard output device (usually the screen). Note that the keyboard and the screen are
default options. We can redirect streams to other devices or files, if necesaary.

292% - Object-Onented Programming with C++

I]ﬂ.ﬂr C+ + Stream Classes

The C++ /O system contains a hierarchy of classes that are used to define various streams
to deal with both the console and disk files. These classes are called stream classes.
Figure 10.2 shows the hierarchy of the stream classes used for input and output operations
with the console unit. These classes are declared in the header file fostream. This file should
be included in all the programs that communicate with the console unit.

| ...'.r.'_ X
pesinlir J
istream | streambuf ostream |
imput | _ outpul
L
s ik ey
sl e e
|
'
istream_withassign iosiream_withassign oslream_withassign |

P}Ehlﬂ.: == Sfream dwﬁrr console [0 operations

As seen in the Fig. 10.2, ios is the basze class for istream (input stream) and ostream
{output stream) which are, in turn, base classes for lostream (input/output stream). The

class ios is declared as the virtual base class so that only one copy of its members are
inherited by the iostream.

The class ios provides the basic support for formatted and unformatted 10O operations.
The class istream provides the facilities for formatted and unformatted input while the
clazs ostream (through inheritance) provides the facilities for formatted output. The class
iostream provides the facilities for handling both input and output streams. Three classes,
namely, istream_withassign, ostream_withassign, and iostream_withassign add
assignment operators to these classes. Table 10.1 gives the details of these classes.

Ilﬂ.4 Unformatted I/0 Operations

Overloaded Operators >> and <<

We have used the objects ein and cout (pre-defined in the iostream file) for the input and
output of data of various types. Thiz has been made possible by overloading the operators
»» and << to recognize all the bazsic C++ types. The >> operator iz overloaded in the

Copyrighted material

Managing Console [0 Operations .2‘93

Table 10.1 Stream classes for console operations

E"ﬂ"m _Wm.-.xe.b";ﬁ"‘.{ S TR
ios = Contains basic facilities that are used by all othe
(General inputfoutput stream class) input and output classes

= Also contains a pointer to a buffer object (streambuaf
object)

= Declares constants and functions that are necessary
for handling formatted input and cutput operations

istream » Inherita the properties of ios
{input stream) * Declares input functions such as get(), getline()
and read()

* Contains overloaded extraction operator >>
ostream * Inherits the properties of ios
{output stream) * Declares output functions put() and write()

Contains overloaded insertion operator <<
instream * Inherits the properties of ios istream and ostream
(input/output stream) through multiple inheritance and thus contains all

the input and output functions
streambuf * Provides an interface to physical devices through
buffers ‘

Acts as a base for filebuf class used ios fles

istream class and << 15 overloaded in the ostream class. The following is the general
format for reading data from the keyvboard:

cin == variablel == variable? == ,... == variablel

variablel, variable2, ... are valid C++ variable names that have been declared already. This
statement will cause the computer to stop the execution and look for input data from the
keyboard. The input data for this statement would be:

datol doted dotoN

The input data are separated by white spaces and should match the type of variable in
the ein list. Spaces, newlines and tabs will be skipped.

The operator >> reads the data character by character and assigns it to the indicated
location. The reading for a variable will be terminated at the encounter of a white space or a
character that does not match the destination type. For example, consider the following code:

int code;
cin == code;

Suppose the following data is given as input:

42580

Copyrighted material

294 e Object-Oriented Programming with C++

The operator will read the characters upto 8 and the value 4258 is assigned to code. The
character D remains in the input stream and will be input to the next cin statement. The
general form for displaying data on the screen is:

cout <<iteml << item? <<,...<<{itemN

The items item I through itemN may be variables or constantz of any basic type. We have
used such statements in a number of examples illustrated in previous chapters.

put() and get() Functions

The classes istream and ostream define two member functions get{) and put{) respectively
to handle the single character input/output operations, There are two types of get() functions.
We can use both getichar *) and get(void) prototypes to fetch a character including the
blank space, tab and the newline character. The get{char *) version assigns the input
character to its argument and the get{void) version returns the input character.

Since these functions are members of the input/foutput stream classes, we must invoke
thern using an appropriate ohject.
W

Example:
char c;
cin.get(c); // get o charocter from keyboard
Jf and assign it to ¢

while(c 1= '"\n')

{
cout =< ¢} /[display the charocter on screen
cin.get{c): /[get another charocter

}

This code reads and displays a line of text (terminated by a newline character). Remember,
the operator »>> can also be used to read a character but it will skip the white spaces and
newline character. The above while loop will not work properly if the statement

cin == ;3

is used in place of

cin.get(c);

rote
Try using both of them and compare the results. j

Copyrighted material

Managing Console I/0 Operations @ 295

The getivoid) version is used as follows;

char c;
c = cin.get(); // cin.get(c); reploced

The value returned by the function get() is assigned to the variable e.

The function puti(), a member of ostream class, can be used to output a line of text,
character by l:ha‘ra-:ter. For example,

cout.put('x');

displays the character x and
cout.put{ch);

displays the value of variable ch.

The variable ¢h must contain a character value. We can also use a number as an argument
to the function put(). For example,

cout.put (68);

displays the character D. This statement will convert the int value 68 to a char value and
display the character whose ASCII value is 68.

The following segment of a program reads a line of text from the keyboard and displays it
on the sereen.

char c;
cin.get(c); J/ read o charocter

while(c I= '\n')

{
cout.put(c); J/ display the character on screen
cin.get(c);

}

Program 10.1 illustrates the use of these two character handling functions.

Copyrighted material

296e Object-Oriented Programming with C++

CHARACTER 1/0 WITH get() AND put()

#include =iostreams

using namespace std;

int main()

{
int count = O;
char c;

cout =< “"INPUT TEXT\n";
cin.get(c);

whilefc 1= '"\n')

{
cout.put{c);
count++;
cin.get(c);

b

cout == "\nNumber of characters =

== Count =< TN

return 0;

PROGRAM 10.1 i

Imput
Object Oriented Programming
Output
Object Oriented Programming
Number of characters = 27

rrodle

When we type a line of input, the text is sent to the program as soon as we press the
RETURN key. The program then reads one character at a time using the statement
cin.get(c); and displays it using the statement cout.putic);. The process i terminated
when the newline character is encountered.

getline() and write() Functions

We can read and display a line of text more efficiently using the line-oriented input/foutput
functions getline() and write(). The getline() function reads a whole line of text that ends
with a newline character (transmitted by the RETURN kev). This function ean be invoked
by using the object cin as follows: '

Managing Console [/O Operations 297

[Ein.gﬂliu (line, size);|

This function call invokes the function getline{) which reads character input into the
variable line. The reading is terminated as soon as either the newline character ‘\n’' is
encountered or size-1 characters are read (whichever-occurs first). The newline character is
read but not saved. Instead, it is replaced by the null character. For example, consider the
following code:

char name[20];
cin.getline(name, 20);

Assume that we have given the following input through the keyboard:
Bjarne Stroustrup <press RETURN=>

This input will be read correctly and assigned to the character array name. Let us suppose
the input is as follows:

Object Oriented Programming <press RETUEN >
In this case, the input will be terminated after reading the following 19 characters:
Object Oriented Pro
Remember, the two blank spaces contained in the string are also taken into account.
We can also read strings using the operator >> a=s follows:
cin >> name;

But remember ein can read strings that do not contain white spaces. This means that
cin can read just one word and not a series of words such as “Bjarne Stroustrup”. But it can
read the following string correctly:

Bjarne Stroustrup

After reading the string, ein automatically adds the terminating null character to the
character array.

Program 10.2 demonstrates the use of >> and getline() for reading the strings.

finclude <jostream»

using namespace std;

(Corntd)

Copyrighted material

The output of Program 10.2 would be:

First run

Enter city name:
Delhi
City name: Delhi

Enter city name again:
City name now:

Enter another city name:
Chennai

New city name: Chennai

Second run

Enter city name:
New Delhi
City name: New

Enter city name in:
City name now: Delhi

Enter another city nur':
Greater Bombay
New city name: Grealer Bombay

Object-Oriented Programming with C++

Copyrighted material

Managing Console I/ O Operations €299

-~ note: ~
During first run, the newline character *\n' at the end of “Delhi” which is waiting in the
input queue is read by the getline() that follows immediately and therefore it does not
wait for any response to the prompt ‘Enter city name again:". The character '\n’ is read
as an empty line. During the second run, the word “Delhi” (that was not read by cin) is
read by the function getline() and, therefore, here again it does not wait for any input to
the prompt ‘Enter city name again:’. Note that the line of text “Greater Bombay” is correctly

km‘i by the second ein.getline(city,size); statement. ¥

The write() function displays an entire line and has the following form:

cout.write (line, size)

The first argument line represents the name of the string to be displayed and the second
argument size indicates the number of characters to display. Note that it does not stop
displaying the characters automatically when the null character is encountered. If the size
i greater than the length of line, then it displays beyond the bounds of line. Program 10.3
illustrates how write() method displays a string.

DISPLAYING STRINGS WITH write()

#include <iostream>
#include <string=

using namespace std;

int main()

1
1

char * stringl = "(++ *;
char * siring? = "Programming”;
int m = strlen(stringl);
int n = strien(string2);

for{int i=1; i=n; 1++)

1
cout.write(string?,1):
cout =< "\n";

]

for{i=n; i=0; 1--)

{
cout.write(string2,i);
cout << "\n";

(Clontd)

300@ Object-Oriented Programming with C++

{/ concatenating strings
cout.write{stringl,m).write {stﬂ nn:.'.n} :

cout =< "\n":

[f cressing the boundary
cout.write(stringl,10);

return 0; PR S r-\:ﬁ-d

Look at the output of Program 10.3:

P
Fr

Pro

Prog

Progr
Progra
Program
Programm
Programmi
Programmin
Programming
Programmin
Programmi
Programm
Program
Progra
Progr

Frog

Pro

Pr

P

C++ Programming
C++ Progr

The last line of the output indicates that the statement

cout.write(stringl, 10);

displays more characters than what is contained in stringl.

PROGRAM 10.3

It is possible to concatenate two strings using the write() function. The statement

cout.write(stringl, m).write(string2, n);

Copyrighted maierial

Managing Console /0 Operations ® 301

is equivalent to the following two statements:

cout.write{stringl, m);
cout.write(string2, n);

Il[l.S Formatted Console 1/0 Operations

C++ supports a number of features that could be used for formatting the output. These
features include: _

® jos class functions and flags.
® Manipulators.
® User-defined output functions.

The ios class contains a large number of member functions that would help us to format
the output in a number of ways. The most important ones among them are listed in
Table 10.2.

Table 10.2 ios format functions

Function Task
Width () To specify the required field size for displaying an output value
precision () To specify the number of digits to be displayed after the decimal point
of a float value
fill(} To specify a character that is used to fill the unused portion of a field
setfi) To specify format flags that can contrel the form of output display (such
a8 left-justification and right-justification)
To clear the flags specified

Manipulators are special functions that can be included in the I/O statements to alter the
format parameters of a stream. Table 10.3 shows some important manipulator functions
that are frequently used. To access these manipulators, the file iomanip should be included

in the program.

Table 10.3 Manipulators

Manipulators ¥ 3i; -] . Eguivalent ios function
setwi) widthi)
setprecision() precision()
setfill())

setiosflags() setfl()
resetiosflags() unsetfy)

302e Object-Oriented Programming wurth C++

In addition to these functions supported by the C++ library, we can create our own
manipulator functions to provide any special output formats. The following sections will
provide details of how to use the pre-defined formatting functions and how to create new

Defining Field Width: width()

We can use the width() function to define the width of a field necessary for the output of an
itemn. Since, it is a member function, we have to use an obhject to inveoke it, as shown below:

! cout.widthiw) ;

where w is the field width (number of columnsg). The output will be printed in a field of w
characters wide at the right end of the field. The width{) function can specify the field
width for only one item (the item that follows immediately). After printing one item (as per
the specifications) it will revert back to the default. For example, the statements

cout.width(5);
cout =< 543 << 12 =< "\n";

will produce the following output:

L1 [5]af3]1]2]

The value 543 is printed right-justified in the first five columns. The specification width(5)
does not retain the setting for printing the number 12. Thiz can be improved as follows:

cout.width(5);

cout =< 543;
cout . width(5);

cout =< 12 << "\n";

This produces the following output:

(| [sfef3] [1| [2]2]

Remember that the field width should be specified for each item separately. C++ never
truncates the values and therefore, if the specified field width is smaller than the size of the
value to be printed, C++ expands the field to fit the value. Program 10.4 demonstrates how
the function width() works.

Managing Console /0 Operations @303

SPECIFYING FIELD 5IZE WITH widthi()

#include <fostreams A TN o 1ot R e B
using namespace std; HE et et e T A

int main()

{ " : E .
int items[4] = (10,8,12,15);
int cost[4] = {75,100,60,99}; : Rt

cout . width(5);

cout << “ITEMS";
cout.width(B); _ T UL ERTPPE e S Mk e
cout << "COST"; T R B akh i e

cout.width(15); :
cout << "TOTAL VALUE" << "\n®;

int sum = 0;

for(int i=0; i<d; i++) ; - s

{) . 2
cout.width(s); ° A
cout << items[i];

cout.width(8);
cout << cost[i];

int value = items[i] * cost[i]:
cout.width(15);

cout =< value << "\n"; j
sum = sum + value;

}

cout << "\n Grand Total = *; ' o

Cﬂ“t.'ﬂidth{g}"-) .:_ 1% i, R TRy T '.‘_:_.'-;.'_“.'_.-:.E i) .; i iy I.'.._ L

cout << sum =< "\n"; 0 b I:ta?l"fh M ':-'i:“::_ T R v g
B : - I;j... fJ; '

I‘EtLlI'I'l n".' i . . 1-1 - - I.,-.l-li'?_-_ R, ki . :I

i ak
, 0.

v
-L- n) k,

304 Ohject-Oriented Programming with Ce+

The output of Program 10.4 would be:

ITEMS COST TOTAL VALUE
10 73 730
8 100 800
12 60 720
15 99 1485

Grand Total = 3755

reode

A field of width two has been used for printing the value of sum and the result is not
truncated. A good gesture of C++ |

Setting Precision: precision()

By default, the floating numbers are printed with six digits after the decimal point. However,
we ¢can specify the number of digits to be displayed after the decimal point while printing
the floating-point numbers. This can be done by using the precision() member function as
follows:

| cout.precision(d); |

where d is the number of digits to the right of the decimal point. For example, the statements

cout.precision(3);

cout =< sgrt(2) =< "\n";
cout == 3,.14159 =< "\n";
cout =< 2.50032 =< "\n";

will produce the following output:
1.141 ([truncated)
3.142 (rounded to the nearest cent)
2.5 (no trailing zeros)
Not that, unlike the function width(), precision() retains the setting in effect until it is
reset. That is why we have declared only one statement for the precision setting which is
used by all the three outputs.

We can set different values to different precision as follows:

cout.precision(3);

Copyrighted material

Managing Console [/0 Operations 305

cout =< 5qrt{Ej =< "\p";
cout.precision(5); // Reset the precision
cout << 3.14158 << "\n";

We can also combine the field specification with the precision setting. Example:
cout.precision(2);

cout . .width(5);
cout =< 1.2345;

The first two statements instruct: “print two digits after the decimal point in a field of five
character width”. Thus, the output will be:

Program 10.5 shows how the functions width() and precision() are jointly used to control
the output format.

d PRECISION SETTING WITH precision()

#include =jostream
#include <cmath=

using namespace std;

int main{)
{

cout =< “Precision set to 3 digits \m\n";
cout.precision{3);

cout .width(10);

cout =< "VALUE";

cout.width(15);

cout << "SORT OF VALUE" =< "\n";

for(int n=1; n<=5: n++)
i
cout .width{8);
cout =< n;
cout, width(13);
cout << sqrt{n}) =< "\n";

(Canid)

Copyrighted material

306 8— Object-Oriented Programming with C++

cout =< "\n Precision set to 5 digits \n\n";
c::m_t-prer:'is1-:m{h}; {{ precision parameter changed
cout =< ™ sqrt(10} = * << sqrt{10) << "\n\n";

cout.precision(0); {{ precision set. to defoult
cout =< ¥ sqre(l0) = ® =< sgrt(10) =< * (default setting)in";

return 0;

PROGRAM 10.5 1

Here iz the output of Program 10.5

Precision set to 3 digits
VALUE SORT OF VALUE
1 1
1.41
1.73

2
2.24

L T - S R L

Precision set to 5 digits

sqrt{10) = 3.1623
sgrit(10) = 3.162278 (default setting)

ftoe ~

Observe the following from the output:

1. The output is rounded to the nearest cent (i.e., 1.6666 will be 1.67 for two digit
precigion but 1.3333 will be 1.33).
2. Trailing zeros are truncated.
3. Precision setting stays in effect until it is reset.
. 4. Default precision is 6 digits. y

Filling and Padding: fill()

We have been printing the values uging much larger field widths than required by the
values. The unused positions of the field are filled with white spaces, by default. However,
we can use the fill() fanction to fill the unused positions by any desired character. It is used
in the following form:

Copyrighted material

Managing Console 170 Operations # 307

cout.fill (ch);

Where ch represents the character which iz used for filling the unuzed positions. Example:

cout. . fill{'*");
cout.width(10);
cout << 5250 =< "\n";

The output would be:

Financial institutions and banks use this kind of padding while printing cheques so that
no one can change the amount easily. Like precision(), fill() stays in effect till we change
it. See Program 10.6 and its output.

PADDING WITH fi114()

#i n{: Tude <i ostream>-

using namespace std;

int main{)
{ cout.fil11('<");
cout.precision(3);

for{int n=1; n<=G; n++)
{
cout.width(5);
cout =< m; .
cout.width{10);
cout =< 1.0 / float(n) =< "\n";
if (n == 3)
cout.fi11 ('=');
1
cout << "\nPadding changed ‘n\n";
cout.fill ('#'); ff fill{) reset
cout.width (15);
cout =< 12.345678 << "\n“;

return 0;

PROGRAM 10.6

3J08@ Ohject-Oriented Programming with C++
The output of Program 10.6 would be:

coes] eeeaaeaes]

o doccoocs) 5

sl JusaCael] 333

*aam]annnnnl] 75
22> hararna] 2

*aamfaennnl] 167

Padding changed

FEHHHIR12.346

Formatting Flags, Bit-fields and setf()

We have seen that when the function width() is used, the value (whether text or number)
is printed right-justified in the field width created. But, it is a usual practice to print the
text left-justified. How do we get a value printed left-justified? Or, how do we get a floating-
point number printed in the scientific notation?

The setf(), a member function of the ios class, can provide answers to these and many
other formatting questions. The setf() (seif stands for set flags) function can be used as
follows:

| cout.setf(argl,arg2) |

The argl is one of the formatting flags defined in the class ios. The formatting flag
specifies the format action required for the output. Another ios constant, argZ, known as bit
field specifies the group to which the formatting flag belongs.

Table 10.4 shows the bit fields, flags and their format actions. There are three bit fields
and each has a group of format flags which are mutually exclusive. Examples:

cout.setf(ios::left, ios::adjustfield);
cout.setf{ios::scientific, ios::floatfield);

Note that the first argument should be one of the group members of the second argument.
Consider the following segment of code;

cout.fil1{"'*");

cout.setf(ios::left, ios::adjustfield);

cout.width(15);
cout << “TABLE 1% =< "\n";

Managing Console I/ 0 Operations @309

Table 10.4 Flags and bit fields for setff] function

Left-justified output ing :: left ios :: adjustfield
Right-justified output i0s iz right ios :: adjustfield
Padding after sign or base ios internal ios o adjustfield
Indicator (like +##20)

Scientific notation ios :: scientific ios :: floatfield
Fixed point notation ios :: fixed ioa :: floatfield
Decimal base 108 3 dec 105 :: basefield
Octal base 108 1 oct ios :: basefield
Hexadecimal base 108 = hex o4 - basefield

This will produce the following output:

T[ATBJLE] [L[*[*[*[*]*[*[*[*

The statements

cout.fill ("*');

cout.precision(3);

cout.setf(ios::internal, ios::adjustfield);
cout.setf(ios::scientific, fos::floatfield);
cout.width(15);

cout << -12.34567 =<<""\n";

will produce the following output:

1= [*[*|1]-]2]|3]5[e[+]|0]1]

role

The sign is left-justified and the value is right left- justified. The space between them is
padded with stars. The value is printed accurate to three decimal places in the scientific
notation.

Displaying Trailing Zeros and Plus Sign

If we print the numbers 10.75, 25.00 and 15.50 using a field width of, say, eight positions,
with two digits precision, then the output will be as follows:

110

——rhem

7
2

il
-
3

310# Object-Oriented Programming with C++
Note that the trailing zeros in the second and third items have been truncated.

Certain situations, such as a list of prices of items or the salary statement of employees,
require trailing zeros to be shown. The above output would look better if they are printed as

follows:

10.75
25.00
15.50

The setf{) can be used with the flag iosu:showpoint as a single argument to achieve this
form of output. For example,

cout.setf({ios::showpoint) J! display troiling zeros

would cause cout to display trailing zeros and trailing decimal point. Under default precision,
the value 3.25 will be displayed as 3.250000, Remember, the default precision assumes a
precision of six digits.

Similarly, a plus sign can be printed before a positive number using the following statement:

cout.setf(ios::showpos); [show +sign
For example, the statements

cout.setf(ios: :showpoint);
cout.setf({ios::showpos);

cout.precision(3);

cout.setf(ios::fixed, ios::floatfield);
cout.setf(ios::internal, fos::adjustfield);
cout.width(10);

cout << 275.5 << *\n";

will produce the following output:

+ 2(7|5|-|(5]0]|0

The flags such as showpoint and showpos do not have any bit fields and therefore are
used as single arguments in setf{). This is possible because the setf() has been declared as
an overloaded function in the class ios. Table 10.5 lists the flags that do not possess a
named bit field. These flags are not mutually exclusive and therefore can be set or cleared
independently.

Copyrighted maierial

Managing Console [/ O Operations 311

Table 10.5 Flags that do not have bit fields

.. Flag
ioa :: showhase
ina 1 showpos
ioa : showpoint
108 I uUppercase
08 skipus
ios 1 unithuf
iog : stdio

Meaning

Use base indicator on output
Print + before positive numbers
Show trailing decimal point and zeroes
Use uppercase letters for hex output
Skip white space on input

Flush all streams after insertion

Flush stdout and stderr after insertion

Program 10.7 demonstrates the setting of various formatting flags using the overloaded
setf() function.

FORMATTING WITH FLAGS IN setf({)

#Finclude =<iostream=
#include =cmath=

using namespace std;

:nt main()
cout.fil11({"*"');

cout.setf(ios::left, ios:

cout.width{10);
cout =< "VALUE®;

radjustfield);

cout.setf(ios::right, ios::adjustfield);

cout.width(15):

cout << "SORT OF VALUE" << "\n";

cout . Filn{'.");
cout.precision(4);

cout.setf(ios: :showpaint);

eout.setf(ios: :showpos):

cout,setf(ios::fixed, ios;

for{int n=1l; n<=10: n++)

:floatfield);

cout.setf(ios::internal, io0s::adjustfield):

cout.width(5);
Cout =< n;

cout.setf(ios::right, ios::adjustfield};

cout.width(20);
cout =< sgrt(n)

e -thu:

(Comtd)

312e Object-Orented Programming with C++

/i floatfleld changed
cout.setf({ios::scientific, ios::floatfield);
cout =< "\nSQRT(100) = " =< sqrt(100) =< "\n*:

return 0;

PROGRAM 10.7

The output of Program 10.7 would be:

VALUE®#w#=®*¥*=50RT OF VALUE
+I'+11II-I-+-I1'I'I'+111I'I'+11W'Jﬂ
+|“|“|EI|‘|‘+‘|Ilr|‘+‘|llrr+1‘|!l42

Fooadeosonasnsnnnans +1.7321
L . +2.0000
FowaBeuwacvrsunninsun +2.2361
L - T, +2.4495
T +2 . 6458
toeaBiiiiiiiiaa .. +2.8284
T +3.0000

+++1Erl- I-++11I'I'I'+1ll'l'++3'l1623

SQRT(100) = +1.0000e+001
rote

The flags set by setf() remain effective until they are reset or unset.

A format flag can be reset any number of times in a program.

We can apply more than one format controls jointly on an output value.
The setfl) sets the specified flags and leaves others unchanged.

o L 1D

10.6 Managing Output with Manipulators

The header file iomanip provides a set of functions called manipulators which can be used
to manipulate the output formats, They provide the same features as that of the ios member
functions and flags. Some manipulators are more convenient to use than their counterparts
in the class ios. For example, two or more manipulators can be used as a chain in one
statement as shown below:

cout =< manipl << manip2 << manip3 << item;
cout =< manipl << iteml =< manip2 << itemZ;

This kind of concatenation is useful when we want to display several columns of output.

Managing Console I O Operations €313

The most commonly used manipulators are shown in Table 10.6. The table also gives
their meaning and equivalents. To access these manipulators, we must include the file

iomanip in the program.
Table 10.6 Manipulators and their meanings

5o : [rin - 4 TP
setw (int w)
setprecision{int d) Set the field width to w, widthi)

Set the floating point precigion to o, precision()
setfilllint c) Set the fill character to c. filli)
setiosflags(long) Set the format flag setfl)
resetiosflags{long f) Clear the flag specified by f. unsetfl)
endl Insert new line and flush stream. “\n"

Some examples of manipulators are given below:

cout =< setw(10) =< 12345;

This statement prints the value 12345 right-justified in a field width of 10 characters.
The output can be made left-justified by modifying the statement as follows:

cout =< setw(10) =< setiosflags(fos::left) =< 12345;

One statement can be used to format output for two or more values. For example, the
statement

cout << setw(5) << setprecision(2) << 1.2345
<< setw(10) << setprecision{4) << sgrt(2)
=< getw(15) =< setiosflags(ios::scientific) =< sqrt(3);
<< endl;

[,

will print all the three values in one line with the field sizes of 5, 10, and 15 respectively.
Note that each output is controlled by different sets of format specifications.

We can jointly use the manipulators and the ios functions in a program. The following
segment of code 15 valid:

cout,setf(ios::showpoint);
cout.setf(ios::showpos);

cout << setprecision(d);

cout << setiosflags(ios::scientific);
cout << setw(10) << 123.45678;

314 e Object-Oriented Programming with Ce+

- e ~
There is a major difference in the way the manipulators are implemented as compared to
the ios member functions. The ios member function return the previous format state
which can be used later, if necessary. But the manipulator does not return the previous
format state. In case, we need to save the old format states, we must use the ios member

Ql.mctiuns rather than the manipulators. Example: ¥

cuut.précisinn{?]: /f previous stote
int p = cout.precision(d); Jf current stote;

When these statements are executed, p will hold the value of 2 (previous state) and the
new format state will be 4. We can restore the previous format state as follows:

cout . precision{p); fp=2

Program 10.8 illustrates the formatting of the output values using both manipulators
and ios functions.

FORMATTING WITH MANIPULATORS

#include <iostream -
#include <iomanip=>

using namespace std;

int main()

i

cout.setf(ios;: :showpoint);

cout << setw(5} << "n"
<< setw(15) << "Inverse_of n"
<< setw(15) << "Sum_of_terms\m\n“;

doubie term, sum = 0;

for(int n=l: n<=10; n++)

{
term = 1.0 / float(n):
sum = sum + term;

cout =< setw(f) =< n
=< satw(l4) =< setprecision(d)

(CCerrbed)

Copyrighted material

Hidden page

316 @ . Object-Oriented Programming with C++
The statement

cout == 36 =< unit;

will produce the following output

36 inches

We can also create manipulators that could represent a sequence of operations. Example:

ostream & show(ostream & output)

{
output.setf{ios::showpoint);
putput.setf(ios::showpos);
output =< setw(10);
return output;

i

This function defines a manipulator called show that turns on the flags showpoint and
showpos declared in the class ios and sets the field width to 10.

Program 10.9 illustrates the creation and use of the user-defined manipulators. The
program creates two manipulators called currency and form which are used in the main
Program.

USER-DEFINED MANIPULATORS

#include =iostream=
#include <iomanip=

using namespace std:

{/ user-defined manipulotors

ostream & currencyl(ostream & output)
!

output =< "Rs";

return outputs

)

ostream & form(ostream & output)

!

output.setf(ios::showpos);
output.setf(ios::showpoint);

(Condd)

Copyrighted material

Managing Console I/ 0 Operations 2317

output.fili('*"});
output.precision(2);
output << setiosflags(ios::fixed)
<< setw(10);
return output;
!
int -main()

{

cout =< currency << form << 7864.5;

return 0;

PROGRAM 10.9

The output of Program 10.9 would be:
Rs*=+7864 .50

Note that form represents a complex set of format functions and manipulators.

\ SUMMARY _L,//

-~

g ¢

In C++, the I/O system is designed to work with different IO devices. This /O system

supplies an interface called ‘stream’ to the programmer, which is independent of the
actual device being used.

A stream is a sequence of bytes and serves as a source or destination for an IO data.
The source stream that provides data to the program is called the input sfream and the
destination stream that receives output from the program is ealled the output stream.
The C++ /0 system containe a hierarchy of stream claszes used for input and output
operations. These clazses are declared in the header file ‘iostream®.

cin represents the input stream connected to the standard input deviee and count
represents the output stream connected to the standard output device.

The istream and ostream classes define two member functions get() and put() to
handle the single character I'O operations.

%» The »>> operator i8 overloaded in the istream class as an extraction operator and the

<< operator is overloaded in the ostream class as an insertion operator.

¢ Wecan read and write a line of text more efficiently using the line oriented I'O functions

getline() and write() respectively.

318

=

o

Ohject-Oriented Programming tith O++

The ios class contains the member functions such as width(), precision(), fill{), setf(),
unsetf{) to format the output.

The header file ‘iomanip’ provides a set of manipulator functions to manipulate output
formats. They provide the same features as that of ios class functions.

We can also design our own manipulators for certain special purposes,

Key Terms

¥ Y Y Y Y ¥y Y Yy ¥y Yy Y Y Yy Y Y Y Y Y Y Y Y Y Y YYYYY

adjustfield

basefield

bit-fields

console /O operations
decimal base
destination stream
flield width

fill()

filling

fixed point notation
flags

floatfield

formatted console 'O
formatting flags
formatting functions
get()

getline()
hexadecimal baze
mput stream
internal

ios

iomanip

lostream

istream

left-justified
manipulator

octal base

ostream

Y Y Y Y Y Y Y Y Y Y Y Y YY YY Y Y YYYYYYYYY

output stream
padding
precision()

puti)
resetiosflags()
right-justified
scientific notation
setli)

setfill()
setiosflags()
setprecision()
setting precision
setwi)

showbase
showpoint
showpos

skipus

source stream
standard input device
standard output device
stream classes
etreambuf
streams

unithbuaf

unsetil)

widthi)

writel)

Managing Console I/0 Operations 319

Review Questions

10.1
10.2
10.3
10.4
10.5
10.6
10.7

10.8

10.9
10.10

10.11

10.12
10.13
10.14
10.15

10.16

What is a stream?

Describe brieflv the features of 1/0 system supported by C++.

How do the I/ 0 facilities in C++ differ from that in C?

Why are the words such as ein and cout nof considered as keywords?

How iz cout able to display various types of data without any special instructions #
Why is it necessary to include the file iostream in all our programs?

Discuss the various forms of get() function supported by the input stream. How
are they used?

How do the following two statements differ in operation?

cin == ¢;
cin.get(c);

Both ein and getline() function can be used for reading a string. Comment.
Discuss the implications of size parameter in the following statement:

cout.write{line, size):

What does the following statement do¥

cout . write(sl,m).write(s2,n);

What role does the iomanip file play?
What is the role of filef) function? When do we use this function?
Discuss the syntax of set() function.

What is the basic difference between manipulators and los member functions in
implementation? Give examples.

State whether the following statements are TRUE or FALSE. *
{a) A C++ stream is a file. '
(b} C++ never truncates data.

{c) The main advantage of width() function is that we can use one width
specification for more than one items.

id) The getivoid) function provides a single-character input that does not skip
over the white spaces.

(e} The header file iomanip can be used in place of ilostream.

ifi We cannot use both the C I/ O functions and C++ [/0 functions in the same
program.

(g} A programmer can define a manipulator that could represent a set of formai
functions.

Copyrighted material

L}

Hidden page

Managing Console I/ O Operations 2321

10.2 Will the statement cout.setf{ios::right) work or not?

#include <ipstream.h>
void I:nn1r1I[]'
{
cout.width(5);
cout =< “99° =< endl;

cout.setf(ios::left);
cout.width(5);
cout << "99" << end];

cout.setf(ios::right);
cout == "99" << endl;

10.3 State errors, if any, in the following statements.
(a) cout =< (void*) amount;
(b) cout =< put("John");
(e} cout =< width({);
(d) int p = cout.width({10);
(@) cout.width(10).precision(3);
(fi cout.setf(ios::scientific,ios::left);
(g) ch = cin.get():
(h) cin.get().get();
(i} cin.get({c).get();
(i) cout == setw(5) =< setprecision(2):
(k) cout =< resetiosflags(ios::left |ios::showpos);

mgﬂlmmﬁ:g Exercises

10.1 Write a program fo read a list containing item name, item code, and cost
interactively and produce a three column output as shown below.

NAME CODE CO5T
Turbo C++ 1001 250.95
C Primer 905 95.70

L] L] LI

----- PN TEETY

Note that the name and eode are lefi-justified and the cost is right-justified with
a precision of two digits. Trailing zeros are shown.

322e Object-Oriented Programming with C++

10.2 Modify the above program to fill the unused spaces with hyphens.

10.3 Write a program which reads a text from the keyvboard and displays the following
information on the screen in two columns!
(a) Number of lines
(b) Number of words
(e) Number of characters
Strings should be left-justified and numbers should be right-justified in a suitable
field width. *

